US009480916B2

a2 United States Patent (10) Patent No.: US 9,480,916 B2
Miller et al. 45) Date of Patent: *Nov. 1, 2016
(54) CONFLICT RESOLUTION IN (56) References Cited
ASYNCHRONOUS MULTIPLAYER GAMES
U.S. PATENT DOCUMENTS
(71) Applicant: Zynga Inc., San Francisco, CA (US) 0224259 BI 122015 Miller et al.
3k
(72) Inventors: Scott G. Miller, Austin, TX (US); 2005/0288103 AL* 1212005 Konuma ... A63F4é§;}é
Nimai Malle, Austin, TX (US) 2012/0094751 Al* 4/2012 Reynolds AG63F 13/12
463/29
(73) Assignee: Zynga Inc., San Francisco, CA (US) 2013/0053150 Al* 2/2013 Miller ..o, AG3F 13/10
463/42
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 0 days.)))
“U.S. Appl. No. 13/477,891, Non Final Office Action mailed Dec.
This patent is subject to a terminal dis- 18, 20147, 14 pgs.
claimer. (Continued)
(21) Appl. No.: 14/973,114 Primary Examiner — Tramar Harper
(22) Filed: Dec. 17, 2015 (74) Attorney, Agent, or Firm — Schwegman Lundberg &
Woessner, P.A.
(65) Prior Publication Data 57) ABSTRACT
US 2016/0101357 Al Apr. 14, 2016 A method and system to host a computer-implemented
multiplayer game includes functionality to identify and
s resolve conflicts resulting from asynchronous game play.
Related U.S. Application Data Client system game state information that changes respon-
(63) Continuation of application No. 13/477,891, filed on sive to in-game actions performed on a client system is
May 22, 2012, now Pat. No. 9,224,259. intermittently synchronized with authoritative game state
o o information, during which the in-game actions may be
(60) Provisional application No. 61/530,581, filed on Sep. validated. Actions that fail a prerequisite check based on the
2, 2011. authoritative game state information are analyzed in auto-
mated fashion to determine whether they are redundant
(1) Int. Cl. actions that fail the prerequisite check owing to their havin
prereq 2 2
GO7F 17/32 (2006.01) been performed with respect to outdated client system game
A63F 13/358 (2014.01) state information. One or more remedial actions are per-
HO4L 29/08 (2006.01) formed for respective redundant actions, e.g., by allowing
(52) US. CL the redundant action and modifying the game state, by
CPC ..o A63F 13/358 (2014.09); GO7F 17/32 restoring spent resources to affected players, or by disallow-
(2013.01); HO4L 67/10 (2013.01) ing both the redundant action and an associated preempting
(58) Field of Classification Search action.
None
See application file for complete search history. 16 Claims, 11 Drawing Sheets
/100
130

140
{

Social
Networking

Player
e System

Game
Networking
System

{
150

US 9,480,916 B2
Page 2

(56) References Cited “U.S. Appl. No. 13/477,891, Response filed Apr. 23, 2015 to Non
OTHER PUBLICATIONS Final Office Action mailed Dec. 18, 2014”, 26 pgs.

“U.S. Appl. No. 13/477,891, Notice of Allowance mailed Aug. 25,
2015, 9 pgs. * cited by examiner

U.S. Patent Nov. 1, 2016 Sheet 1 of 11 US 9,480,916 B2

100
¥

140

(

|
I
|
|
|
|
|
|
| Social
|
|
I
|
I
|
I

Networking

}/HO

Game
Networking
System

\

180

US 9,480,916 B2

Sheet 2 of 11

Nov. 1, 2016

U.S. Patent

1senhbay
_uogepiie

T

ot
SINPOWy -
uoijeuiuiala(]
fourpunpay

aubBug useplEA

(N

0e
LWasAs uoneplieA

sy
UONEDIEA

ost

X4 ,\‘
| ITET
\w\ X WEISAG JUBI) PUOSRS
prrd
o g /m
~ e
oy 2Ol
' - \\ia Ewcum_@_mr _/
" m
BON
pappdy |
. =Y 1%
{
f] UopBLLDIY m Y
{ oy cesefeg |
{ o [4x4
—_ mf — Em\mm b 2o auen
voetiop] aeg |
| vewcingg - 57z
ﬂﬁ, %.. L fipigr sigic aues)
W
aulfug aueeg)

74
WsISAS weulsbeueyy sl

wasAs Bupomisy sweo

80¢
oifo meip sweD

oel m‘

wisishq Jueln) 1944

SLBSAS B

U.S. Patent Nov. 1, 2016 Sheet 3 of 11 US 9,480,916 B2

Validation System

Validation Engine

Game State Library Vaiida:tzigg Logic
££0

Comparison Module Receiving Module

]
A

Redundancy
Determination
Modula

FIG. 3A

(Game Managemem System
40

o A Velidation Validation Resuit
Recesvza&moduiv Request Module Receiver
; Al Persistence Game State
dpdatg Moduie Module Retrieval Module
420 424
Conflict Resolution Engine
. State Cost
Triage Module Assessment Determination
433 Moduls Module
441 437

FIG. 3B

U.S. Patent

Nov. 1, 2016

Sheet 4 of 11

US 9,480,916 B2

Game Management System
470

224

Yalidation Engine

Reaeiving modide
404

Conflict Resolution Engine

430

Redundancy
Determination

Module
2

Triage Module
433

Assessment

State

Moduls
441

Cost
Determination
Module
437

FIG. 4

U.S. Patent Nov. 1, 2016 Sheet 5 of 11 US 9,480,916 B2

Receive Action Identifiers P/ 500
504

Y FIG. 5A

Receive Provisional Game
State Information po-meemmmm e

508 i
; v
Execute Validation Actions identify Redundant Action
mmmmm _@. -
912 653
§

Compare Results of Vaiidation
Actions to Provisional Game
State Information
516

Hecelve Action Identifiers
524

Y

Receive Provisional Game
520 State Information

g 528

}

Transmit Validation Request
232

!

Receive Validation Result
536

i

i

i

; .
Perform Remedial Action | Generate Updated Game

£55 State Information
540

:

Persist Updated Game State
FEG SE information
544

U.S. Patent

Nov. 1, 2016

Sheet 6 of 11 US 9,480,916 B2

Recaive Action ldentifiars
indicating in-Game
Action(s)

580

570
¥

:

Access Authoritative
Game State Information
583

;

Determine that Action{s}
Fails a Prarequisite Check

s

;

FIG. 5C

Determine That Action s @
Redundant Action
589

US 9,480,916 B2

Sheet 7 of 11

Nov. 1, 2016

U.S. Patent

UOROY

LaloY

g

leplieAu]

959

UOOY UCREDIRA ULotad

§o8UD aISINDe,

Bt

&

UOHEZIUOI

34y
LOREOYHON
UAG-UION JiLiSUR] |

89
SJE}G PETIUGIYDUAS O] Uiey
DUY SOUEISU] BLIBY) PROSY

@iBIg euen) n?m

o
2
=7
]
2 B8
o
C‘
P4
=9

]

mm
13enbey
SURi| pus el

L)

ORI 8l8lS aliee)

78

1

¥
507 s1epdn 01 gijleq aﬁw suien)
SRR PUE B1B1S sWiec) APOy

i

(743
{da1g) uonoy swesy

214 aels &t :ﬂ\u Em_ﬁaoﬁ

B/, SUBOEY

V9 Ol

[0S
1esnbay o m_o:m>
JUSUR | DU SiBiBUan

919
ndu] AzjdalueD) 1881 SAIR0SY

.

t

Ch
{231
o

g
SoURISU| BWET) PBJIB|eE pROT

BLURE) 10l SABISY

809
SOURISU] BUIBS) 2108)08 J8kR]d

4

288
Isanbay eepdr; aAle0Y

e

<Ol

TF
144
BIUED) BURUQ S835800Y JBREld

wigy

shg

[ij74
uswsbeue) sluen

=

&
w

)
LRS!
g

U.S. Patent

Nov. 1, 2016

Sheet 8 of 11

“Actions ™.
~ Performed by Samd~,
“[dvel g

1Y,

checnization
is| o'

Parse & fi

Defermine that there is nt Gam\, State

No Redundant Action
732

N0

in-game

855 “\\
gmBelow Trresho! tnmemmenmmnt

" of n- Game s
~J{esources Spentl.

Defermine T“al Costlis

ation for Later Action™
Have Indication of
T e t o

Above Thresholde——ge

US 9,480,916 B2

[‘“’"’ 653

1}

identily Later Action as 3
Redundani Action

7
L2

38
|

OfRaso iR

Purchased

ine that Costis

ririvial
A
747

is Stats Conflict

Significant? Y g
748
no
¥ ¥ ¥ ¥

Revarse Redundant

1) ('"
Allow Both Preempting ACJ’"JH and

and/i?c:dundant Compensate and/.\ &
S Radundani Actor Aclions
220 754 188

Allow Both Preempting
edundeant

Reverse Redundant
and Preempting
Actions and
Compensate Both
r’Eavers
756

FiG. 68

¥

v

Mor*ify Envircnmend
State 'th”’ﬂd tion

Partidlly Compensate
Cne of the Players
762

1]

Generate and Send
Advisory ’\%1% Sage

US 9,480,916 B2

Sheet 9 of 11

Nov. 1, 2016

U.S. Patent

L Ol

a Jsheld
aepdn Y 88l UMod doyn aiepdn
veL— 9L, poL
ocL —/ 80/,
ZhL
alepdn ¥ 81| umo(] doyn gepdn
v iefeld

US 9,480,916 B2

Sheet 10 of 11

Nov. 1, 2016

U.S. Patent

8401S eleq
G¥8

[2i008

8 Ol

18 528
(
Z

‘e ‘sefed gom

‘sabessom ‘O
ydelsy |pnog

Ble(] 207

‘e ‘sejepdn
‘sisenbsy BiRQ &8

0eg

Em@»w
BUIIOMIBN
2078 -
048~ 2100
4 A
‘ne'salbessai
Oli} S1B1S BlueD)
/
L8
L
WalsAg
BunLOMIBN

Emwm..%m jusio

018 ‘Sieisuel |
Bleq ‘sheidsig

408~ aluen)

Spve
S8~

sues ‘sndu; sleD) £28

V// 008

U.S. Patent

Nov. 1, 2016

Sheet 11 of 11

US 9,480,916 B2

924

Social Networking System
g22

922

924

Game Networking System

822 922
-~ .

924
9202
. - (;
900 B0 et e b Network e
960
L
FEG 9 930
1002~ Processor 1000
A0 S
bl Cane [0V
1010 Host Network Emmﬁ
Bridge Inferface
% High Performance 1O Bus %
r 1006
10124 O Bus System | 4014
Bridge Memory
% Standard 1/0 Bus %
g Vass 1008

Storage

1O Ports

20 E16.10

US 9,480,916 B2

1
CONFLICT RESOLUTION IN
ASYNCHRONOUS MULTIPLAYER GAMES

CLAIM OF PRIORITY

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/477,891, filed on May 22, 2012, which
claims the benefit of priority under 35 U.S.C. §119(e) to U.S.
Provisional Patent Application Ser. No. 61/530,581, filed on
Sep. 2, 2011, the benefit of priority of each of which is
claimed hereby, and each of which is incorporated by
reference herein in its entirety.

TECHNICAL FIELD

This disclosure generally relates to games and applica-
tions in general and, in particular embodiments, to com-
puter-implemented games, such as online role-playing
games (RPGs) that are playable by more than one person
from more than one location.

BACKGROUND

In many online computer games, there is a virtual world
or some other imagined playing space where a player of the
game controls one or more player characters (herein “char-
acters,” “player characters,” or “PCs”). Player characters
can be considered in-game representations of the controlling
player. As used herein, the terms player, user, entity, neigh-
bor, friend, and the like may refer to the in-game player
character controlled by that player, user, entity, or friend,
unless context suggests otherwise. A game display can
display a representation of the player character. A game
engine accepts inputs from the player, determines player
character actions, decides outcomes of events, and presents
the player with a game display illuminating game play. In
some games, there are multiple players, wherein each player
controls one or more player characters.

Many online computer games are operated on an online
social network. Such a network allows both users and other
parties to interact with the computer games directly, whether
to play the games or to retrieve game- or user-related
information. Internet users may maintain one or more
accounts with various service providers, including, for
example, online game networking systems and online social
networking systems. Online systems can typically be
accessed using browser clients (e.g., Firefox, Chrome, Inter-
net Explorer).

A client-side computing device or computer system may
present the online game to the user by executing coded game
logic or scripts for the online game. For example, a player
may visit a virtual city of the online game, and may perform
an in-game action by initiating a battle between the player’s
player character and another character in the virtual city. To
perform and animate the battle, the player’s client comput-
ing device may execute game view logic (e.g., JavaScript or
ActionScript) to generate a visual representation of the
in-game action, while execution of the battle or in-game
action by game logic on the client computing device may
make changes to a game state associated with the player
based on the in-game action.

Such client-side execution of in-game actions allows near
real-time interaction between the player and the client
computing device, promoting immersive gameplay action.
When multiple players, however, perform actions with
respect to a common environment, environment state infor-
mation on respective client computing devices may be out of

15

20

40

45

2

synchronization with each other or with authoritative game
state information on a master database, which can occasion-
ally result in conflicts in environment state information
and/or player state information.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example of a system for implement-
ing particular disclosed embodiments.

FIG. 2 illustrates a more detailed view of an example
system for implementing an example embodiment.

FIGS. 3A and 3B illustrate an example validation system
and game management system for implementing particular
disclosed embodiments.

FIG. 4 illustrates an example game management system
for implementing particular disclosed embodiments.

FIGS. 5A, 5B and 5C illustrate high-level views of
respective methods of implementing exemplary embodi-
ments.

FIGS. 6A and 6B illustrate flowcharts for example meth-
ods of implementing particular disclosed embodiments.

FIG. 7 illustrates a timeline showing a series of actions by
two players with respect to a common environment in a
multiplayer online game, resulting in a game state conflict.

FIG. 8 illustrates an example data flow in a system.

FIG. 9 illustrates an example network environment.

FIG. 10 illustrates an example computer system architec-
ture.

DESCRIPTION OF EXAMPLE EMBODIMENTS

One example embodiment may provide a method and
system to provide an asynchronous multiplayer game. The
method and system may include functionality to resolve
conflicts in asynchronous multiplayer online gameplay. The
method may comprise, on a server-side validation system,
validating in-game actions performed on a client system in
a multi player online game, for example by executing
server-side validation actions identical to the in-game
actions. Validating in-game actions may include perfor-
mance of at least one prerequisite check with respect to
authoritative game state information, such as master game
state information under control of the server-side validation
system, to determine whether or not the in-game actions
were permitted actions. Actions that fail the prerequisite
check may be identified as potentially invalid actions, and
the system may determine for respective potentially invalid
actions whether the potentially invalid action is a redundant
action that failed the prerequisite check owing to its having
been performed with respect to outdated game state infor-
mation on the client system.

In-game actions are performed on the client system with
respect to client system game state information that is stored
on the client system and that is periodically or intermittently
synchronized with authoritative game state information
under the exclusive control of the server-side validation
system. Such synchronization may comprise updating the
authoritative game state information with respect to actions
performed on the client system since the last synchroniza-
tion, and incorporating game state changes resulting from
the client system in-game actions if those in-game actions
are validated. The client system game state information is at
the same time updated to include game state changes result-
ing from in-game actions that were performed by other
players on other client systems and that was synchronized
with and validated by the server-side validation system since

US 9,480,916 B2

3

the last synchronization between the client system game
state information and the authoritative game state informa-
tion.

Situations may thus occur where the player, on the client
system, performs an in-game action which is valid based on
the client system game state information, but which is
invalid when based on the authoritative game state infor-
mation at the next synchronization. Such an action is
referred to herein as a redundant action, while the client
system game state information with respect to which a
redundant action is originally performed is occasionally
referred to as outdated game state information. A particular
action by another player that causes a change in the authori-
tative game state information, thereby resulting in redun-
dancy of the redundant action, is referred to herein as a
preempting action. For example, if a second player upgrades
an in-game object, e.g. a virtual building, but upgrading of
the object is not reflected in the client system game state
information of a first player when the first player also
upgrades the same object, then the upgrading action per-
formed by the second player is a preempting action with
respect to the redundant upgrading action performed by the
second player.

Example embodiments disclosed herein provide a system
and method to resolve such conflicts arising from asynchro-
nous multiplayer gameplay. Responsive to identifying a
potentially invalid action, it is determined whether or not the
invalid action is a redundant action. If a redundant action is
identified, a remedial action may be executed to resolve
differences between the client system game state informa-
tion and the authoritative game state information that result
from the redundant action. Performance of the remedial
action may be conditional upon a positive determination by
the system that the potentially invalid action is a redundant
action. Remedial actions may include, for example, restor-
ing resources spent on the redundant action by way of a
reverse synchronization message, allowing the redundant
action if predefined criteria are satisfied, and reversing both
the redundant action and a preempting action performed by
a second player.

In some embodiments, server-side coded validation logic
to perform the validation actions may be identical to client-
side coded game logic by which the in-game actions were
executed. In other embodiments, server-side validation may
be performed in a manner different from that by which
validation is performed by client-side game logic.

An example game environment for implementing the
above-described method and system is described below,
whereafter the example embodiment is described in greater
detail, in the context of the example game environment.
Example Game Environment

FIG. 1 illustrates an example of a system for implement-
ing various disclosed embodiments. In particular embodi-
ments, system 100 comprises player 101, social networking
system 140, game networking system 150, client system
130, and network 160. The components of system 100 can
be connected to each other in any suitable configuration,
using any suitable type of connection. The components may
be connected directly or over a network 160, which may be
any suitable network. For example, one or more portions of
network 160 may be an ad hoc network, an intranet, an
extranet, a virtual private network (VPN), a local area
network (LAN), a wireless LAN (WLAN), a wide area
network (WAN), a wireless WAN (WWAN), a metropolitan
area network (MAN), a portion of the Internet, a portion of
the Public Switched Telephone Network (PSTN), a cellular

35

40

45

4

telephone network, another type of network, or a combina-
tion of two or more such networks.

Social networking system 140 is a network-addressable
computing system that can host one or more social graphs.
An electronic social networking system typically operates
with one or more social networking servers providing inter-
action between users such that a user can specify other users
of the social networking system as “friends.” A collection of
users and the “friend” connections between users can form
a social graph that can be traversed to find second, third and
more remote connections between users, much like a graph
of nodes connected by edges can be traversed.

Social networking system 140 can generate, store,
receive, and transmit social networking data. Social net-
working system 140 can be accessed by the other compo-
nents of system 100 either directly or via network 160.
Game networking system 150 is a network-addressable
computing system that can host one or more online games.
Game networking system 150 can generate, store, receive,
and transmit game-related data, such as, for example, game
account data, game input, game state data, and game dis-
plays. Game networking system 150 can be accessed by the
other components of system 100 either directly or via
network 160. Player 101 may use client system 130 to
access, send data to, and receive data from social networking
system 140 and game networking system 150. Client system
130 can access social networking system 140 or game
networking system 150 directly, via network 160, or via a
third-party system. As an example and not by way of
limitation, client system 130 may access game networking
system 150 via social networking system 140. Client system
130 can be any suitable computing device, such as a
personal computer, laptop, cellular phone, smart phone,
computing tablet, or the like.

Although FIG. 1 illustrates a particular number of players
101, social networking systems 140, game networking sys-
tems 150, client systems 130, and networks 160, this dis-
closure contemplates any suitable number of players 101,
social networking systems 140, game networking systems
150, client systems 130, and networks 160. As an example
and not by way of limitation, system 100 may include one
or more game networking systems 150 and no social net-
working system 140. As another example and not by way of
limitation, system 100 may include a system that comprises
both social networking system 140 and game networking
system 150. Moreover, although FIG. 1 illustrates a particu-
lar arrangement of player 101, social networking system
140, game networking system 150, client system 130, and
network 160, this disclosure contemplates any suitable
arrangement of player 101, social networking system 140,
game networking system 150, client system 130, and net-
work 160.

The components of system 100 may be connected to each
other using any suitable connections 110. For example,
suitable connections /O include wireline (such as, for
example, Digital Subscriber Line (DSL) or Data Over Cable
Service Interface Specification (DOCSIS)), wireless (such
as, for example, Wi-Fi or Worldwide Interoperability for
Microwave Access (WiMAX)) or optical (such as, for
example, Synchronous Optical Network (SONET) or Syn-
chronous Digital Hierarchy (SDH)) connections. In particu-
lar embodiments, one or more connections 110 each include
an ad hoc network, an intranet, an extranet, a VPN, a LAN,
a WLAN, a WAN, a WWAN, a MAN, a portion of the
Internet, a portion of the PSTN, a cellular telephone net-
work, another type of connection, or a combination of two
or more such connections. Connections 1/O need not nec-

US 9,480,916 B2

5

essarily be the same throughout system 100. One or more
first connections /O may differ in one or more respects from
one or more second connections 110. Although FIG. 1
illustrates particular connections I/O between player 101,
social networking system 140, game networking system
150, client system 130, and network 160, this disclosure
contemplates any suitable connections between player 101,
social networking system 140, game networking system
150, client system 130, and network 160. As an example and
not by way of limitation, in particular embodiments, client
system 130 may have a direct connection to social network-
ing system 140 or game networking system 150, bypassing
network 160.

Game Networking Systems

In an online computer game, a game engine manages the
game state of the game and effects changes to the game state
based on in-game actions performed by a player (e.g., player
101 of FIG. 1). A game state comprises all game play
parameters, including player character state, non-player
character (NPC) state, in-game object state, game world
state (e.g., internal game clocks, game environment), and
other game play parameters. Each player 101 controls one or
more player characters (PCs). The game engine controls all
other aspects of the game, including non-player characters
(NPCs) and in-game objects. The game engine also manages
game state, including player character state for currently
active (online) and inactive (offline) players.

In the example environment illustrated in FIGS. 1 and 2,
an online game can be administered by game networking
system 150, while a game engine 204 may be hosted on the
client device or client system 130. The game networking
system 150 can be accessed by the client system 130 using
any suitable connection. A player may have a game account
on game networking system 150, wherein the game account
can contain a variety of information associated with the
player e.g., the player’s personal information, financial
information, purchase history, player character state, game
state). In some embodiments, a player may play multiple
games administered by game networking system 150, which
may maintain a single game account for the player with
respect to all the games, or multiple individual game
accounts for each game with respect to the player. In some
embodiments, game networking system 150 can assign a
unique identifier to each player 101 of an online game
administered by game networking system 150. Game net-
working system 150 can determine that a player 101 is
accessing the online game by reading the user’s cookies,
which may be appended to Hypertext Transfer Protocol
(HTTP) requests transmitted by client system 130, and/or by
the player 101 logging onto the online game.

In embodiments in which the game engine 204 is pro-
vided by the client system 130, player 101 may access the
game and control the game’s progress via client system 130
(e.g., by inputting commands to the game at the client
device). Client system 130 may display the game interface
by use of game view logic 208 (FIG. 2), receive inputs from
player 101, and may perform in-game actions or events
responsive to the user inputs by means of game logic 212,
forming part of the game engine 204. The game logic 212
may effect changes to game state information associated
with the player 101 caused by the in-game actions per-
formed responsive to user input. The client system 130 may
also maintain a game state library 216 that stores game state
information indicative of the game state associated with the
player 101. Game state information may, for example,
include player state information and world state information
or environment state information. This disclosure discusses

10

15

20

25

30

35

40

45

50

55

60

65

6

potentially invalid actions resulting from out-of-sync game
state information, and is thus applicable to any multiplayer
game in which respective devices store player-specific game
state information that are synchronized from time to time
with authoritative game state information (such as master
game state information), regardless of the particular archi-
tecture for implementing such a multiplayer game.

The client system 130 may be in continuous communi-
cation with the game networking system 150 or may inter-
mittently transfer to the game networking system 150 update
information with respect to in-game actions executed by the
game engine 204. Client system 130 can thus, for example,
download client components of an online game, which are
executed locally, while a remote game server, such as game
networking system 150, provides backend support for the
client components and may be responsible for maintaining
the application data of the game, updating and/or synchro-
nizing the game state based on the game logic 212, and each
input from the player 101, and transmitting instructions to
client system 130. Execution of the game engine 204 on the
client system 130 enables off-line and/or asynchronous
gameplay by a user via the client system 130.

Game Play

In particular embodiments, player 101 can engage in, or
cause a player character controlled by him to engage in, one
or more in-game actions. For a particular game, various
types of in-game actions may be available to player 101. As
an example and not by way of limitation, a player character
in an online role-playing game may be able to interact with
other player characters, build a virtual house, attack
enemies, go on a quest, and go to a virtual store to buy/sell
virtual items. As another example and not by way of
limitation, a player character in an online poker game may
be able to play at specific tables, place bets of virtual or legal
currency for certain amounts, discard or hold certain cards,
play or fold certain hands, and play in a online poker
tournament.

In particular embodiments, player 101 may engage in an
in-game action by providing one or more user inputs to
client system 130. Various actions may require various types
and numbers of user inputs. Some types of in-game actions
may require a single user input. As an example and not by
way of limitation, player 101 may be able to harvest a virtual
crop by clicking on it once with a mouse. Some types of
in-game actions may require multiple user inputs. As
another example and not by way of limitation, player 101
may be able throw a virtual fireball at an in-game object by
entering the following sequence on a keyboard: DOWN,
DOWN and RIGHT, RIGHT, B. This disclosure contem-
plates engaging in in-game actions using any suitable num-
ber and type of user inputs.

In particular embodiments, player 101 can perform an
in-game action on an in-game object or with respect to
another player character. An in-game object is any interac-
tive element of an online game. In-game objects may
include, for example, PCs, NPCs, in-game assets and other
virtual items, in-game obstacles, game elements, game fea-
tures, and other in-game objects. This disclosure contem-
plates performing in-game actions on any suitable in-game
objects. For a particular in-game object, various types of
in-game actions may be available to player 101 based on the
type of in-game object. As an example and not by way of
limitation, if player 101 encounters a virtual bear, the game
engine may give him the options of shooting the bear or
petting the bear. Some in-game actions may be available for
particular types of in-game objects but not other types. As an
example and not by way of limitation, if player 101 encoun-

US 9,480,916 B2

7

ters a virtual rock, the game engine may give him the option
of moving the rock; however, unlike the virtual bear, the
game engine may not allow player 101 to shoot or pet the
virtual rock. Furthermore, for a particular in-game object,
various types of in-game actions may be available to player
101 based on the game state of the in-game object. As an
example and not by way of limitation, if player 101 encoun-
ters a virtual crop that was recently planted, the game engine
may give him only the option of fertilizing the crop, but if
player 101 returns to the virtual crop later when it is fully
grown, the game engine may give him only the option of
harvesting the crop.

In particular embodiments, the game engine may cause
one or more game events to occur in the game. Game events
may include, for example, a change in game state, an
outcome of an engagement, a completion of an in-game
obstacle, a transfer of an in-game asset or other virtual item,
or a provision of access, rights and/or benefits. In particular
embodiments, a game event is any change in game state.
Similarly, any change in game state may be a game event.
This disclosure contemplates any suitable type of game
event. As an example and not by way of limitation, the game
engine may cause a game event where the virtual world
cycles between daytime and nighttime every 24 hours. As
another example and not by way of limitation, the game
engine may cause a game event where a new instance, level,
or area of the game becomes available to player 101. As yet
another example and not by way of limitation, the game
engine may cause a game event where player 101°s player
character heals one hit point every 5 minutes.

In particular embodiments, a game event or change in
game state may be an outcome of one or more in-game
actions. The game engine can determine the outcome of a
game event or a change in game state according to a variety
of factors, such as, for example, game logic or rules, player
character in-game actions, player character state, game state
of one or more in-game objects, interactions of other player
characters, or random calculations. As an example and not
by way of limitation, player 101 may overcome an in-game
obstacle and earn sufficient experience points to advance to
the next level, thereby changing the game state of player
101’s player character (it advances to the next character
level). As another example and not by way of limitation,
player 101 may defeat a particular boss NPC in a game
instance, thereby causing a game event where the game
instance is completed, and the player advances to a new
game instance. As yet another example and not by way of
limitation, player 101 may pick the lock on a virtual door to
open it, thereby changing the game state of the door (it goes
from closed to open) and causing a game event (the player
can access a new area of the game).

In particular embodiments, player 101 may access par-
ticular game instances of an online game. A game instance
is a copy of a specific game play area that is created during
runtime. In particular embodiments, a game instance is a
discrete game play area where one or more players 101 can
interact in synchronous or asynchronous play. A game
instance may be, for example, a level, zone, area, region,
location, virtual space, or other suitable play area. A game
instance may be populated by one or more in-game objects.
Each object may be defined within the game instance by one
or more variables, such as, for example, position, height,
width, depth, direction, time, duration, speed, color, and
other suitable variables. A game instance may be exclusive
(i.e., accessible by specific players) or nonexclusive (i.e.,
accessible by any player). The features relating to resolution
of game state conflicts as described herein may in many

10

15

20

25

30

35

40

45

50

55

60

65

8

embodiments be with respect to nonexclusive game
instances, where multiple players may perform actions with
respect to commonly accessible in-game objects, characters
and/or environments. In particular embodiments, a game
instance is populated by one or more player characters
controlled by one or more players 101 and one or more
in-game objects controlled by the game engine. When
accessing an online game, the game engine may allow player
101 to select a particular game instance to play from a
plurality of game instances. Alternatively, the game engine
may automatically select the game instance that player 101
will access. In particular embodiments, an online game
comprises only one game instance that all players 101 of the
online game can access.

In particular embodiments, a specific game instance may
be associated with one or more specific players. A game
instance is associated with a specific player when one or
more game parameters of the game instance are associated
with the specific player. As an example and not by way of
limitation, a game instance associated with a first player may
be named “First Player’s Play Area.” This game instance
may be populated with the first player’s PC and one or more
in-game objects associated with the first player. As used
herein, a player who is thus uniquely associated with a
specific game instance, and to whom certain actions are
exclusively available, is referred to as a “host player.”

Such a game instance associated with a specific player
may be accessible by one or more other players, either
synchronously or asynchronously with the specific player’s
game play. As an example and not by way of limitation, a
first player (i.e., the host player) may be associated with a
first game instance, but the first game instance may be
accessed by all first-degree friends in the first player’s social
network. As used herein, players thus accessing a game
instance associated with another player are referred to as
“guest players.” In particular embodiments, the game engine
may create a specific game instance for a specific player
when that player accesses the game. As an example and not
by way of limitation, the game engine may create a first
game instance when a first player initially accesses an online
game, and that same game instance may be loaded each time
the first player accesses the game.

In particular embodiments, the set of in-game actions
available to a specific player may be different in a game
instance that is associated with that player e.g., in which the
player is a host player) compared to a game instance that is
not associated with that player (e.g., in which the player is
a guest player). The set of in-game actions available to a
specific player in a game instance associated with that player
may be a subset, superset, or independent of the set of
in-game actions available to that player in a game instance
that is not associated with him. As an example and not by
way of limitation, a first player may be associated with
Blackacre Farm in an online farming game. The first player
may be able to plant crops on Blackacre Farm. If the first
player accesses a game instance associated with another
player, such as Whiteacre Farm, the game engine may not
allow the first player to plant crops in that game instance.
However, other in-game actions may be available to the first
player, such as watering or fertilizing crops on Whiteacre
Farm.

Example System

FIG. 2 illustrates an example embodiment of a game
networking system 150 for implementing particular dis-
closed embodiments. The game networking system 150
includes a validation system 220 to validate in-game actions
performed in an online game. In the example embodiment of

US 9,480,916 B2

9

FIG. 2, the validation system 220 is to validate in-game
actions in a multiplayer online game, typically a massively
multiplayer online game, but in other embodiments, the
methodologies and systems described herein can be
employed to validate in-game actions in a single player
online game, for example where client system game state
information may become outdated due to in-game actions by
an administrator or NPCs. It will be appreciated that the
game networking system 150 typically serves multiple client
systems 130 that are associated with respective players 101.
For ease of description, only two client systems and asso-
ciated players are schematically shown in FIG. 2, namely a
first player 101 that plays the game on a first client system
130, and a second player 201 that plays the game on a
similar or analogous second client system 130.1.

FIG. 3A illustrates an example validation system 220
forming part of the game networking system 150 of FIG. 2.
The validation system 220 may comprise a number of
hardware-implemented modules provided by one or more
processors. The validation system 220 may include a receiv-
ing module 304 to receive a validation request 222 (see FIG.
2) that includes: one or more action identifiers to indicate
corresponding in-game actions executed on the client system
130; and provisional game state information with respect to
the game state of the player 101 and execution of the one or
more in-game actions indicated by the validation request
222. In some embodiments, the validation request 222 may
include player inputs received at the client system 130 to
cause execution of the relevant in-game actions.

The validation system 220 may further include a valida-
tion engine 224 that comprises coded validation logic 228 to
execute validation actions identical to the in-game actions
identified in the validation request 222. The validation logic
228 may be identical to the game logic 212 forming part of
the game engine 204. As used herein, the term “identical”
with respect to coded logic means not only that identical
operations are automatically performed responsive to iden-
tical inputs, but also means that the code of the respective
coded logic is in the same format and/or computer program-
ming language and may thus be used interchangeably. In an
example embodiment, the game logic 212, and the valida-
tion logic 228 may be identical sequences of ActionScript
code. In some instances, the validation engine 224 may be
identical to the game engine 204, while, in other example
embodiments, the validation engine 224 and the game
engine 204 may be different, but may have identical game
logic 212 and validation logic. In other embodiments,
server-side validation of client-side in-game actions may be
performed by validation logic that is not identical to client-
side game logic.

The validation engine 224 may further include a game
state library 232 to temporarily hold game state information
with respect to the player 101. The validation logic 228 and
the game state library 232 may be configured to cooperate,
so that the validation logic 228 executes validation actions
based at least in part on game state information stored in the
game state library 232, and updates or changes the game
state information in the game state library 232 based on the
validation actions.

A comparison module 308 (FIG. 3A) may further form
part of the validation system 220 to compare results of
execution of the validation actions (e.g., verification game
state information resulting from execution of the validation
actions by the validation logic 228) to the provisional game
state information included in the validation request 222. The
comparison module 308 may be configured to validate the
relevant in-game actions by determining that the provisional

15

35

40

45

50

55

60

65

10

game state information is identical to the verification game
state information, e.g., that performance of the validation
actions by the validation engine 224 has the same effect on
the immediately prior game state information as execution
of the corresponding in-game actions by the game engine
204.

The validation system 220 may also include a redundancy
determination module 312 that is configured to determine
whether or not a potentially invalid action is a redundant
action. For example, the validation logic 228 may perform
prerequisite checks to determine whether or not a particular
in-game action was valid based on the authoritative game
state information at the time. Failure of such prerequisite
checks may be due to player malfeasance, or it may be due
to redundancy of the client system game state information
with respect to which the action was performed. The redun-
dancy determination module 312 may automatically parse
relevant game state information and/or synchronization his-
tory to determine whether or not failure of a particular
prerequisite check is as a result of game state information
redundancy. Although the redundancy determination mod-
ule 312 is, in this example, shown to form part of the
validation system 220, the redundancy determination mod-
ule 312 may, in other embodiments, form part of a game
management system, such as the game management system
240 described below with reference to FIGS. 2 and 4.

Referring to FIG. 2, the game networking system 150 may
further comprise a game management system 240 compris-
ing a game state database 244 in which validated game states
for a plurality of players may be persisted or stored. The
game management system 240 further comprises a synchro-
nization management device or synchronization manager
248 to receive update requests 252 from client systems 130,
to generate and send validation request 222 to the validation
system 220, to receive a validation result 256 from the
validation system 220, and to persist validated game state
information in the game state database 244. In the example
embodiment shown in FIG. 2, the synchronization manager
248 is a Web server. In other embodiments, the functional-
ities of the game management system 240 and the validation
system 220 may be provided by a single game management
system located at a particular site, so that action validation,
game state synchronization, and conflict resolution are per-
formed by a single game management system. An example
of such a system is later described herein with reference to
FIG. 4.

FIG. 3B illustrates a number of components of an exem-
plary game management system 240, in this example
embodiment being provided by the Web server providing the
synchronization manager 248. The game management sys-
tem 240 includes a receiving module 404 to receive an
update request 252 (see FIG. 2) that includes action identi-
fiers indicating a number of in-game actions executed on the
game engine 204 of the client system 130, and further
includes provisional game state information resulting from
performance of the relevant in-game actions. In some
embodiments, the provisional game state information may
include the client system game state information with
respect to which the in-game actions were performed. In this
embodiment, however, the game management system 240
may include a game state retrieval module 424 to retrieve
prior game state information that indicates previously vali-
dated authoritative game state information immediately
before execution of the relevant in-game actions indicated in
the update request 252. The game management system 240
may further include a validation request module 408 to
generate and transmit a validation request 222 in response to

US 9,480,916 B2

11

reception of the update request 252. The game management
system 240 further includes a validation result receiver 412
to receive a validation result 256 (FIG. 2) that indicates
whether or not in-game actions included in the validation
request 222 have been validated. An update module 416 may
further be provided to generate validated game state infor-
mation based at least in part on the provisional game state
information included in the update request 252, and based at
least in part on the validation result 256, and a persistence
module 420 may be provided to process the updated game
state information and to persist the updated game state
information to the game state database 244. The updated and
validated game state information forms the authoritative
game state information under the control of the game
management system 240, with respect to which future
in-game actions are to be validated.

The game management system 240 may also provide a
conflict resolution engine 430 to resolve redundant actions
and/or game state conflicts that may stem from redundant
actions performed with respect to outdated or out-of-sync
game state information on the client system 130. Operation
of the conflict resolution engine 430 is described at greater
length below with reference to FIG. 6B and FIG. 7.

The conflict resolution engine 430 may, for example,
include a triage module 433 that comprises conflict resolu-
tion logic to automatically decide one or more remedial
actions with respect to the game state conflict. Such remedial
actions may include, for example, validating one or both of
the redundant action and its associated preempting action,
invalidating one or both of the redundant action and its
associated preempting action, and/or ameliorating detrimen-
tal or undesired in-game effects stemming from the redun-
dancy (e.g., by restoring spent resources associated with an
invalidated redundant action and/or an invalidated preempt-
ing action), by state changes to in-game objects involved in
the conflicting actions, and/or by the adjustment of in-game
score or experience levels).

The conflict resolution engine 430 may accordingly
include a cost determination module 437 to automatically
determine costs of the relevant actions, e.g. by assessing the
value of in-game resources spent in performing the actions.
The conflict resolution engine 430 may further include a
state assessment module 441 to determine and/or assess
possible game state conflicts (including, e.g., player state
conflict and world state conflicts) that may result from one
or more permutations of validating or invalidating the con-
flicting actions.

Although the conflict resolution engine 430 is shown, that
in this example embodiment, to form part of the game
management system 240, the conflict resolution engine 430
may, in other embodiments, be provided as part of the
validation system 220.

FIG. 4 shows an example embodiment of a game man-
agement system 470 in which the conflict resolution engine
430 includes a redundancy determination module 312 such
as that described with reference to FIG. 3A. The game
management system 470 therefore operates without gener-
ating a validation request that is sent to a validation system,
instead of performing validation, redundancy determination,
and conflict resolution on-board. The game management
system 470 may further include a validation engine 224 and
a receiving module 404.

Functionality of the validation system 220, the game
management system 240 and their respective components, in
accordance with an example embodiment, are further
described below with respect to example methods.

20

25

40

45

55

12

Example Methods

FIG. 5A shows a flowchart 500 of a high-level view of an
example method, performed by a validation system such as
validation system 220 (FIG. 2), validate in-game actions
performed in a multiplayer online game. The method of
flowchart 500 comprises receiving from the game manage-
ment system 240 action identifiers, at operation 504, and
provisional game state information, at operation 508. The
action identifiers and provisional game state information
may be included in a validation request 222 that may be a
serialized communication, for example being in XML, for-
mat. The action identifiers may be with respect to a plurality
of in-game actions performed by the game logic 212, the
provisional game state information being with respect to
changes to the game state associated with the player 101
caused by execution of the in-game actions. The validation
engine 224 may thereafter execute validation actions, at
operation 512, by use of the validation logic 228.

Before or during execution of the validation actions, one
or more of the actions may be identified as a redundant
action, at 653.

Results of execution of the validation actions, e.g., in the
form of verification game state information generated by the
validation engine 224, are compared, at operation 516, to the
provisional game state information included in the valida-
tion request 222, to validate the in-game actions indicated by
the validation request 222. If the provisional game state
information with respect to a particular in-game action is
identical to verification game state information for a corre-
sponding validation action, then the particular in-game
actions may be validated.

FIG. 5B shows a flowchart 520 of a high-level view of an
example method, performed by a game management system
such as game management system 240 (FIG. 2), to validate
in-game actions performed in a multiplayer online game.
The method of flowchart 520 comprises receiving from the
client system 130 a plurality of action identifiers, at opera-
tion 524, and provisional game state information, at opera-
tion 528. The action identifiers and provisional game state
information may be included in an update request 252 (FIG.
2) that may be a serialized message, in the present example
embodiment being in XML format. A validation request 222
may thereafter be transmitted, at operation 532, to the
validation system 220, to validate the in-game actions indi-
cated by the action identifiers in the update request 252 by
executing validation actions identical to the in-game actions
by the validation logic 228 that may be identical to the game
logic 212 of the game engine 204, on which the in-game
actions were initially executed. Note that, in other embodi-
ments, validation of the in-game actions may be performed
differently.

The game management system 240 may subsequently
receive a validation result 256 (FIG. 2) from the validation
system 220, at operation 536, indicating that one or more of
the in-game actions have been validated, or indicating that
one or more redundant actions have been identified. If any
of the actions were identified as being a redundant action,
remedial action may be performed, at 655.

The game management system 240 may thereafter gen-
erate updated game state information, at operation 540,
based on the validation result 256 and based upon prior
game state information that indicates previously validated
game state information immediately before execution of the
relevant in-game actions. The updated game state informa-
tion is then persisted, at operation 544. Note that the result
of the method is to synchronize game state information
between the client system 130 and the game management

US 9,480,916 B2

13

system 240/470. Therefore, synchronization is complete
when, after operation 544, the game state information in the
client system game state library 216 is identical to the game
state information on the game state database 244.

FIG. 5C is a further example embodiment of a method
that may be performed by example systems described
herein, for example being performed by the game manage-
ment system 470 of FIG. 4, although the method 570 may
also be performed by respective components of the valida-
tion system 220 and game management system 240 of FIG.
3A. The method 570 may comprise receiving, at 580, one or
more action identifiers that indicate corresponding in-game
actions executed on a client system. Authoritative game state
information may be accessed, at 583, the authoritative game
state information indicating a validated game state prior to
execution of the respective actions. It may thereafter auto-
matically be determined whether or not the respective
actions that fail the prerequisite, e.g., by determining
whether or not the respective actions should have been
allowed based on the respective validated game states. If it
is determined, at 586, that a particular action fails a prereq-
uisite check, it is determined, at 589, whether the particular
action is a redundant action. Determination of the redun-
dancy of the particular action may be by determining that the
particular action was erroneously permitted by the client
system owing to its having been performed on the client
system with respect to outdated client system game state
information.

FIG. 6 shows a more detailed flowchart 600 of a method
to validate in-game actions in a multiplayer online game,
and to synchronize game state information in the multiplayer
online game. The method of flowchart 600 may be imple-
mented in one embodiment by example system 100 of FIG.
1, with some of the operations being performed by example
game management system 240 or example validation system
220 described with reference to FIGS. 3 and 4 above, in the
game environment described with reference to FIGS. 1 and
2 above. The flowchart of FIG. 6 is illustrated as being
divided into so-called swim lanes, to indicate which of the
operations are performed by the client system 130, the game
management system 240, or the validation system 220,
respectively.

At operation 604, the player 101 may access the multi-
player online game on the client system 130. Although not
illustrated in the flowchart 600 of FIG. 6, the client system
130 may access a webpage hosted by social networking
system 140 on the game networking system 150, whereafter
the first player’s social networking information may be
accessed. In particular embodiments, social networking
information on the social networking system 140, the game
networking system 150, or both may be accessed. At opera-
tion 608, the player 101 may select a game instance to
access. In particular embodiments, game instances can be
selected from a set of game instances associated with the
first player’s friends in the relevant social network. Here, the
player 101 selects the game instance uniquely associated
with him/her. At operation 612, the game engine 204 may
then load the game instance associated with the player 101.
Loading of the game instance, at operation 612, may include
retrieving a last synchronized or validated game state or
game state information from the game management system
240, and loading of the game state information into the game
state library 216 of the game engine 204 provided by the
client system 130. In the present example embodiment, the
game state library 216 is a PHP Hypertext Preprocessor
(PHP) library. Loading of the game instance may further
include generating, by use of the game view logic 208 (FIG.

10

15

20

25

30

35

40

45

50

55

60

65

14

2), a user interface including a game display that includes a
visual representation of a virtual in-game environment of the
game instance.

The player 101 may provide gameplay input, at operation
616, to the client system 130, the input, for example, being
encountered by the game view logic 208. Upon receipt of
input to perform an action that may affect game state, one or
more assumption checks or prerequisite checks may be
performed, at operation 618, to check whether or not pre-
defined prerequisites or assumptions are satisfied in order to
perform the relevant actions. Such prerequisite checks may
include, for example, checking whether or not the player
character has a required minimum in-game experience level,
whether an in-game object on which the action is to be
performed has a predefined status to permit performance of
the action, and so forth. If the predefined prerequisite
check(s) for a particular in-game action is satisfied, the
action is executed, at operation 620.

In-game actions that may affect game state information of
the player 101 may be executed, at operation 620, by the
game logic 212 of the game engine 204, the game logic 212
in this instance being ActionScript code. The game logic 212
may be configured such that in-game actions that affect
game state are modified into atomic logic elements that are
referred to herein, inter alia, as “steps.” In FIG. 2, an
exemplary sequence of in-game actions or steps are illus-
trated as Actions A-C. In some embodiments, logic common
to the game engine 204 and the validation engine 224 (e.g.,
game logic 212, and identical validation logic 228 in the
example embodiment of FIG. 2) may be limited to game
logic that affects game state, while other game logic (e.g.,
game logic that does not affect game state information) may
located on the client system 130 only.

Upon execution of each in-game action or step, at opera-
tion 620, the game engine 204 may modify the game state
information in the game state library 216, and may addi-
tionally record the step or action and its resulting game state
delta or game state change(s), at operation 624, in an update
log 215 (FIG. 2) forming part of the client system 130. In the
present example embodiment, the game state deltas or game
state changes recorded in the update log 215 may be game
step deltas respectively indicating changes to the game state
information caused by performance of a corresponding one
of the in-game actions or steps.

In the present example embodiment, game state informa-
tion in the game state library 216 may be maintained in a
property tree or graph with respect to the player 101. Such
a property tree may be maintained, for example by the game
management system 240, with respect to each of the mul-
tiplicity of players of the multiplayer online game, and may
be loaded into the game state library 216 upon loading of an
associated game instance by the game engine 204. The
property tree may contain nested sets of property values that
are organized locally. Each property of the property tree is
defined by a respective key, which may be a dot-separated
list of tree nodes and a final leaf name. Both nodes and
names are strings consisting of lowercase letters, numbers,
dashes or underscores. An example property tree for a
simple slot machine game may look as follows:

player.name:string

player.high_score:int

player.high_score.date:date

inventory.coins:int

achievements.match_three.state:int

achievements.match_two.state:int

Game state information in the exemplary form of a
property tree as described above may facilitate translation to

US 9,480,916 B2

15

XML format, so that transmissions of game state informa-
tion between the game management system 240 and the
client system 130 may be serialized, for example being
XML communications. An XML version of the above exem-
plified property tree, may read as follows:

<properties>

<player>
<name type="string”>
John Doe
</name>
<high_ score type=“int”>
3500

<date type=“string”>
2009.11.25 5:32:09
</date>
</high_ score>
</player>
<inventory>
<coins type=“int”>
274
</coins>
</inventory>
<achievements>
<match-two>
<state type="int’>1</state>
</match_ two>
<match__three>
<state type="int">0</state>
</match__three>
</achievement>
</properties>

Game step information written to the update log 215 may
include inputs received for the respective actions or steps,
and game step deltas in the form of property changes to the
property tree or game state information resulting from
execution of the associated action or step. The client system
130 may intermittently or periodically generate checkpoints
or update requests 252, at operation 628, with respect to
in-game actions or steps which have not yet been validated
and/or which have not been included in a previous update
request 252, and may transmit the update request 252 to the
game management system 240.

The game client system 130 may produce a serialized
update request 252, for example in XML format. Each
update request 252 may include action identifiers for the
associated in-game actions, as well as provisional game state
information in the form of game step deltas resulting from
the respective actions. The action identifiers may comprise
an action type or step type identifier, as well as identification
of user input that prompted performance of the action.
Provisional game state information may be provided for
each action included in the update request. Such action of a
specific game state information may comprise an absolute
value for a particular property after completion of the action,
or it may comprise a change or delta to a particular property
resulting from performance of the action. The provisional
game state information may comprise only those properties
of the player character that have been affected by perfor-
mance of the respective action. An example serialized
update request 252 may read as follows:

<checkpoint>
<properties user__id="1:12345">
... strata state
</properties>
<sync>
<property>
<name>sound</name>

10

15

20

25

30

40

60

65

16

-continued

<type>boolean</type>
<value>false</value>
</property>
</sync>
<step type="com.zynga.kingdoms.steps.Movement”>
<input><to>5</to></input>
<output>
<property>
<name>location</name>
<type>int</type>
<value>5</value>
</property>
<property>
<name>energy</name>
<type>int</type>
<delta>-1</delta>
</property>
</output>
</step>
<step type="com.zynga.kingdoms.steps.Movement”>
<input><to>6</to></input>
<output>
<property>
<name>location</name>
<type>int</type>
<value>6</value>
</property>
<property>
<name>energy</name>
<type>int</type>
<delta>-1</delta>
</property>
</output>
</step>
</checkpoint>

It will be noted that the above example XML checkpoint
or update request 252 includes a synchronization that blindly
sets the player state to advance non-validated player state
between steps. The example update request 252 above
identifies two in-game actions. The first action is identified
by an action type identifier as being a movement action. The
action identifiers further include an input having a value of
5. Provisional game state information in the form of game
state information for the first action comprises location and
energy level outputs resulting from performance of the first
action. Thus, the player character’s location has a value of
5 after performance of the first movement action, while the
energy level of the player character is decremented by a
single unit due to the action. The second action indicated by
action identifiers in the above example XML update request
252 comprises a number movement action having an input
value of 6 and an output value of 6, while the performance
of the second movement action also results in decrementing
of the energy level by a further unit.

Update requests 252 such as that exemplified above may
be generated and transmitted at regular intervals (for
example at intervals of 30 seconds to two minutes), or may
be generated and transmitted intermittently. In instances of
off-line play input, information, output information, and
game step deltas may be stored in the update log 215 until
the game client system 130 is reconnected to the game
management system 240, at which time the relevant infor-
mation with respect to all in-game actions which have not
yet been included in a transmitted update request 252 may
be included in a single update request 252. At the completion
of'the updating process described with reference to FIG. 6A,
and in some cases the performance of remedial actions as
described below with reference to FIG. 6B, the game state
library 216 of the client system 130 is synchronized with the
game state database 244 of the game management system
240.

US 9,480,916 B2

17

In some instances, some of the in-game actions indicated
in the update request 252 may comprise actions or events
having an element of randomness. For example when a
player character engages in an in-game battle with a non-
player character, the game engine 204 may generate a
random seed as an input before execution of the battle. The
update request 252 may in such instances include the
randomly generated input, or random seed, related to the
in-game action or event.

Upon receipt of the update request 252 by the receiving
module 404 (FIG. 3B) of the game management system 240,
at operation 632, the game state retrieval module 424 (FIG.
3B) accesses a persistence subsystem in the form of the
game state database 244, and retrieves prior game state
information, at operation 634, with respect to the player 101
and the particular game instance indicated by the update
request 252. The prior game state information indicates
previously validated game state information immediately
before execution of the one or more in-game actions indi-
cated in the update request 252. In the present example, the
prior game state information includes player state informa-
tion 266 (FIG. 2), and environment state information 262 in
the example form of world state information. The environ-
ment state information 262 may indicate the last validated
state of the in-game environment or virtual world, for
example indicating the location, type, and states of virtual
objects in the in-game environment. The player state infor-
mation 266 may, for example, be a last validated property
tree, such as that described above with respect to the claim
client system 130, for the relevant player character. Both of
the environment state information 262 and player state
information 266 may be in a format that is serializable.

The method of flowchart 600 may include serializing the
prior game state information, at operation 636, and may
thereafter include generating and transmitting a validation
request 222, at operation 640, by means of the validation
request module 408 (FIG. 3B). The validation request 222
includes the action identifiers and provisional game state
information received in the update request 252 (e.g., action
type identifiers, input information, and output information),
together with serialized environment state information 262
and player state information 266. The validation request 222
is transmitted, at operation 640, to the validation system 220.

Upon receipt of the validation request 222, at operation
644, by the receiving module 304 (FIG. 3A) of the validation
system 220, game state library 232 of the validation engine
224 is populated, at operation 648, with the prior game state
information included in the validation request 222 (e.g., the
environment state information 262 and the player state
information 266).

Thereafter, validation actions corresponding to the in-
game actions indicated in the validation request 222 may be
performed by the validation logic 228 of the validation
engine 224. As mentioned before, the validation logic 228
may comprise ActionScript code identical to that of the
game logic 212 forming part of the game engine 204 of the
game client system 130, as shown in FIG. 2. Such perfor-
mance of the validation actions may comprise, with respect
to each action, performing a prerequisite check, at operation
652, and, if the prerequisite check is successful, performing
the relevant validation action, at operation 656. It will be
appreciated that the prerequisite checks may be performed
with respect to the prior game state information in the game
state library 232. The prerequisite checks may, in particular,
be performed based on respective validated game states (as
indicated by the authoritative game state information) for
each action. One or more prerequisite check may thus be

25

30

40

45

50

55

18

performed for each action, to verify that predefined game
state information criteria (e.g., environment state informa-
tion criteria and/or player state information criteria) are
satisfied by the validated game state. Thus, for example,
certain actions with respect to certain in-game objects may
only be available when the objects are in a predefined state,
while the player character is in a predefined state, and so
forth.

If the prerequisite check fails, the redundancy determina-
tion module 312 determines, at operation 653, whether or
not the relevant action is a redundant action, that is, an action
for which the prerequisite check failed owing to outdated or
out-of-sync client system game state information. The
method for determining whether or not a particular action is
a redundant action is described further below with reference
to FIG. 7. If the action under consideration is not a redundant
action, then the action may be an illegal action, possibly
owing to attempted hacking or player malfeasance, or the
action may fail the prerequisite check owing to a system bug
or programming error. In such cases, the action is invali-
dated, at operation 660. If, however, it is determined, at
operation 653, that the action under consideration is a
redundant action, the relevant action may be indicated as a
redundant action in a validation result 256, resulting in
performance of remedial action(s), at operation 655. In this
example, the remedial action(s) is performed by the triage
module 433. Example remedial actions, as well as conflict
resolution logic for determining which remedial action to
take are later described with reference to FIG. 7.

Returning now to FIG. 6 A, performance of the validation
action, at operation 656, may include generation of verifi-
cation game state information, in this example being vali-
dation output resulting from performance of the validation
action. Because the validation logic 228 is identical to the
game logic 212, execution of identical actions based on
identical game state information should result in identical
outputs. Game state changes, deltas, or outputs resulting
from performance of each validation action may thus be
compared, at operation 664, with the corresponding output
of the associated in-game action indicated in the validation
request 222. If the validation output (also referred to as the
results of execution of the relevant validation action) is
identical to the corresponding in-game output (also referred
to as the provisional game state information), then the
in-game action is validated, at operation 668. If, however,
there is a discrepancy between the validation output and the
corresponding in-game output, then the relevant action is
invalidated, at operation 660.

When a particular action is validated, at operation 668, the
sequence of operations to validate an action, at operations
652 to 668, is performed for the next in-game action
indicated in the validation request 222. The plurality of
in-game actions indicated in the validation request 222 are
thus validated stepwise, in sequence, until all of the actions
have been validated, or until a first invalid action or redun-
dant action is identified, either by failure of a prerequisite
check, at operation 652, or by identification of a discrepancy
between the validation output and the in-game output, at
operation 664.

When validation of the sequence of in-game actions of the
validation request 222 is completed (or when one of the
in-game actions are invalidated or identified as being redun-
dant), the validation result 256 is generated and transmitted,
at operation 672, to the game management system 240.
Generation of the validation result 256 may comprise assem-
bling or collating a resultant or cumulative game state delta
resulting from all of the validated actions or steps. Property

US 9,480,916 B2

19

values in the validation result 256 may thus indicate a final
output (e.g., for a property such as location) or a cumulative
delta (e.g., for property such as player character energy or
experience) at the last validated action. The validation result
256 may again be serialized, in the example embodiment
being an XML document. An extract of an example valida-
tion result 256, following validation of all of the actions
indicated in the exemplary validation request 222 provided
above, may look as follows:

<checkpoint success="“true”>
<sync>
<property>

<name>sound</name>
<type>boolean</type>
<value>false</value>

</property>

<property>
<name>location</name>
<type>int</type>
<value>6</value>

</property>

<property>
<name>energy</name>
<type>int</type>
<delta>-2</delta>

</property>

<property>

<name>rng seed</name>
<type>int</type>
<value>1807257224</value>

</property>

</sync>
</checkpoint>

After receiving the validation result 256 at operation 676,
the game management system 240 may perform remedial
action(s), at 655, if required, and combines the game state
deltas for validated game state information indicated in the
validation result 256 with the prior game state information,
at operation 680, to produce updated game state information
that is whole, consistent, new game state information, in the
present example embodiment comprising validated environ-
ment state information 262 and validated player state infor-
mation 266. The validated game state information may be
stored by being persisted to the game state database 244, at
operation 684, thus forming updated authoritative game
state information.

In the event of invalidation of any in-game action by the
validation system 220 at operation 660 (and/or if the reme-
dial action(s) includes invalidation of any action), the game
management system 240 may communicate a non-synchro-
nization notification to the client system 130, at operation
688, to notify the client system 130 that the game state
information of the client system 130 is out of synchroniza-
tion with the game management system 240, e.g., that the
provisional game state information included in the update
request 252 could not be completely validated. The non-
synchronization notification may identify the last or furthest
validated action and/or may indicate furthest validated for
validated game state information. In response to receiving
the non-synchronization notification, the client system 130
may cause operation of the game engine 204 to stop game-
play, forcing the player to reload the game instance, and
returning to a furthest consistent or synchronized state, at
operation 692, as indicated in the non-synchronization noti-
fication.

The contflict resolution engine 430 may serve to resolve
conflicts stemming from concurrent actions (e.g., including
identified redundant actions) performed by different players

10

15

20

25

30

35

40

45

50

55

60

65

20

owing to the game state information on one of their client
systems 130 conflicting, with the authoritative game state
information in the game state database 244 when the asso-
ciated update request 252 is sent. Such conflict resolution
may include performance of the remedial action(s), at 655.
As used herein, the term “game state information” may in
some embodiments encompass both environment state
information and player state information. The architecture
and validation method described with reference to FIG. 2
permits asynchronous play, in that a player’s client system
130 is not in direct and continual communication with the
game management system 240, but instead only intermit-
tently communicates update requests 252 to validate in-
game actions and to synchronize game state information on
the player’s game engine 204 and on the central game state
database 244. Two or more players may thus play the game
asynchronously, potentially giving rise to game state con-
flicts.

For example, when two or more players perform actions
with respect to a common in-game object, situations can
occur where one player performs an in-game action that is
permitted on the associated client system 130 based on client
system game state information (e.g., the game state infor-
mation stored in the game state library 216 when the relevant
action is performed) that is out-of-sync with master game
state information (also referred to herein as authoritative
game state information) in the master game state database
244 at synchronization time, while the action would not have
been permitted if the client system game state information
was synchronized with the authoritative game state infor-
mation when the action was performed. As described pre-
viously, when an update request 252 with respect to such a
conflicting in-game action is received, a prerequisite check
operation (e.g. at 652 in FIG. 6A) by the validation system
220 is performed based on authoritative game state infor-
mation provided by the master game state database 244 that
may be different from the game state information on the
player’s game engine 204 when the action was performed,
and may thus indicate that certain actions are redundant,
even though such actions were validly performed by the
game engine 204, but based on outdated game state infor-
mation. The conflict resolution system, comprising the con-
flict resolution engine 430, is configured to address such
conflicts, and, in certain instances, to allow redundant
actions. For ease of description, two conflicting actions (e.g.
two actions that are performed with respect to a common
in-game object or environment and that may caused a
conflict as described above) are referred to as a preempting
action and a redundant action. The preempting action may
be the one of the relevant two actions which is first com-
municated to the game management system 240 in a syn-
chronization or update request 252. The later synchronized
of the two actions may in such case be referred to as the
redundant action. Of course, there may in some instances be
more than one preempting actions, and more than one
redundant actions.

FIG. 7 shows a timeline of an example situation in which
a game state conflict and a resulting redundant action may
arise. The timeline of FIG. 7 is with respect to actions
performed using two respective client systems (indicated as
first client system 130 and second client system 130.1 in
FIG. 2) by two players 101, 201, in a shared virtual
environment to which both players have access and in which
the players have overlapping rights. For ease and clarity of
description, player 101 (playing the game on the first client
system 130) is further referred to as player A, and player 201
(playing the game on the second client system 130.1) is

US 9,480,916 B2

21

further referred to as player B. The actions of player A are
indicated above the timeline of FIG. 7, while the actions of
player B are indicated below the timeline.

Player B may send an update request 252 at time 704,
synchronizing the game state information in the game state
library 216 of player B with the game state database 244 at
time 704. Player A may thereafter likewise update a series of
in-game actions at time 708.

Player A may thereafter perform an in-game action with
respect to an in-game object by, for example, chopping down
a virtual tree, at time 712. This action causes changes to
client system game state information in the game state
library 216 of player A, for example recording a change in
client system environment state information reflecting that
the relevant tree is chopped down, and reflecting depletion
of resources in player A’s client system player state infor-
mation. When the first client system 130 of player A next
sends an update request 252, at time 720, the game state
changes resulting from chopping down a tree may be
validated by the validation engine 224 and may be recorded
in the game state database 244 of the game management
system 240.

Between successive synchronizations or update requests
252 by the second client system 130.1 of player B (for
example between the updates or checkpoints at times 704
and 724 of FIG. 7 respectively), the game engine 204 of the
second client system 130.1 is unaware of any in-game
actions performed by player A. Client system game state
information on the game engine 204 of player B may
therefore be out of sync with the game state database 244.
For example, if player B wishes to chop down, at time 716,
the same tree that was chopped down by player A (at time
712), the game engine 204 of player B will not be aware that
the tree in question has already been chopped down by
player A. Because validation checks for chopping down the
tree based on the client system game state information on the
second client system 130.1 will be passed, the game engine
204 of player B will allow player B to chop down the
relevant tree, and will animate and display the action to
player B. It will be appreciated that the above situation
would apply even if the chopping down of the tree by player
B were to occur (in real-time) after the update by player A
(at time 720), because the second client system 130.1 of
player B only receives information indicative of prior chop-
ping down of the tree upon its first update (at time 724)
following the update by player A (at time 720). In this
example, chopping down of the tree by player A at 712 is a
preempting action with respect to the redundant action of
chopping down the tree by player B at 716.

The validation engine 224 thereafter performs validation
of the in-game actions performed by player B and identified
in the update request 252 sent at time 724. Such validation
is performed with reference to authoritative game state
information, e.g., environment state information 262 and
player state information 266 retrieved from the game state
database 244. The authoritative game state information
reflects the previously validated chopping down of the
relevant tree by player A. When the validation engine 224
performs a prerequisite check for chopping down the tree by
player B, the prerequisite check fails, because the tree that
was chopped down by player B had already been chopped
down according to the authoritative environment state infor-
mation 262. The game networking system 150 (or, in the
example embodiment of FIG. 4, the game management
system 470) may include a redundancy determination mod-
ule 312 to determine whether or not the invalidated action is
a redundant action, and a conflict resolution engine 430 to

25

40

45

22

process the conflict and to resolve the conflict in a least
invasive or detrimental manner.

The redundancy determination module 312 may be con-
figured to determine whether a conflicting action is a redun-
dant action, and the conflict resolution engine 430 may
perform remedial action(s), which may include allowing
(and therefore validating) the redundant action. A redundant
action is thus a conflicting action that was performed inad-
vertently owing to out-of-sync game state information. If,
however, the redundancy determination module 312 deter-
mines that the conflicting action is not a redundant action,
e.g., not being inadvertent, it may determine that the con-
flicting action is due to malicious activity by player B (e.g.
attempted hacking), or is due to a system error (e.g., a
programming bug).

FIG. 6B shows a flowchart of example methods of deter-
mining whether one of the conflicting actions is a redundant
action (generally indicated by reference numeral 653), and
of performing remedial action(s) (generally indicated by
reference numeral 655.

A first step in determining whether or not a conflicting
action is a redundant action is to determine, at 730, whether
or not the two conflicting actions were performed by the
same player. If the conflicting actions were indeed per-
formed by the same player, it is determined, at 732, that
there is no redundant action, and the conflicting action will
thus be disallowed or invalidated by the validation system
220. Thus, for example, if player A chopped down the same
tree again after time 712 (FIG. 7), then it may be assumed
that the second instance of chopping down a tree was due to
a system bug or to illegal activity by player A.

If, however, the conflicting actions were performed by
separate players, synchronization history information for the
relevant client systems (e.g. first client system 130 and
second client system 130.1) may be parsed, at 734, to
consider the time sequence of performance of the potentially
redundant action relative to updates or synchronizations
between the game management system 240 and the respec-
tive client systems of player A and player B, thereby to
distinguish between redundant actions and illegal/malicious
actions or bugs. In this example embodiment, the redun-
dancy determination module 312 is configured to determine,
at 736, whether or not client system game state information
on the second client system 130.1 of player B would have
included an indication of the preempting action (in this
example of chopping down of the tree at time 712 by player
A) at the time when player B executed the potentially
redundant action (e.g. chopping down the tree at time 716).

For example, the conflicting action may be considered a
redundant action only if a synchronization or update by the
later synchronizing player (player B) that immediately pre-
cedes the potentially redundant action (e.g. the update at
time 704, that precedes the action at time 716) precedes the
synchronization or update by the earlier synchronizing
player (player A) in which the preempting action is com-
municated to the game management system 240 (e.g. the
update at 720, that communicates the action at 712). In some
instances, the redundant action may thus, in real-time, be
performed before the preempting action, but will be con-
sidered a redundant action if its associated update or syn-
chronization occurs after the update or synchronization for
the preempting action. In other examples, the redundant
action may be performed after the update associated with the
preempting action, but will still be considered a redundant
action because the client system game state information of

US 9,480,916 B2

23

player B not be apprised of the preempting action until the
first update by player B following the update by player A for
the preempting action.

To facilitate and enable discrimination by the validation
engine 224 between redundant actions and illegal actions or
bugs, synchronization history information that is indicative
of the time of respective in-game actions and updates, as
well as the identity of persons performing the actions and
identities, may be recorded and may be communicated to the
validation system 220 and the game management system
240, e.g. by way of the update request 252 and/or the
validation request 222.

Once it is determined, at 738, that a conflicting action is
indeed a redundant action (e.g., that it is an inadvertent
conflicting action owing to out-of-sync game state informa-
tion) remedial action may be taken, at 655 by the validation
system 220 and/or the game management system 240. The
particular remedial action to be taken may be action specific,
and/or may be determined by the conflict resolution logic or
triage logic provided by the triage module 473 based on the
nature of the action, its effect on the in-game environment,
and/or the nature and amount of resources spent on per-
forming the redundant action.

For example, a redundant action with a trivial cost and a
limited environmental effect may be allowed, at 750, so that
resources spent by the later acting player (e.g. player B in the
example of FIG. 7) remains spent, and the environment or
object with respect to which the redundant action was
performed remains in its state at the end of performance of
the redundant action. In the example of FIG. 7, e.g., chop-
ping down a tree may expend a relatively small amount of
player B’s in-game energy level, so that redundant chopping
down of the tree by player B may be considered to have a
trivial cost to player B. In such an instance, player B will not
be aware of the redundancy of his action with respect to
chopping down of the tree, so that the conflict is effectively
resolved in a least invasive manner.

Whether a cost for a particular action is trivial or non-
trivial may be determined based on the nature or type of
resource expended on the action, and/or on the amount of the
resource expended. The cost of a particular action may be
measured in the in-game value of quantifiable resources
spent on performing the action, and/or may include any
other measurable indication of something of value con-
sumed in performance of the action. In some instances, time
or effort spent by the player in performing the action may be
taken into account for determining the cost of the action,
although such time or effort is naturally not a resource that
is refundable. In this example embodiment, expenditure of
any purchased resource may be considered non-trivial,
regardless of the amount of resources expended. When a
player thus spends an in-game currency that has been
purchased with out-of-game currency, the associated action
may invariably be considered to be non-trivial. When,
however, the expended currency is a non-purchased in-game
currency, the expense may be considered trivial if it falls
below a predefined threshold value and may be considered
non-trivial if it exceeds the threshold value.

The method 655 may thus include determining, at 738
(e.g., by cost determination module 437), a type of resource
spent in performing the redundant action. If the resources
spent in performing the redundant action include purchased
resources e.g., in-game resources bought with out-of-game
currency), then it is determined, at 742, that the cost is
non-trivial. If, however, it is determined that only in-game
resources were spent on the redundant action, it may be
determined, at 744, whether or not the spent resources are

10

15

20

25

30

35

40

45

50

55

60

65

24

above or below a predetermined threshold, upon which
determination that the cost is trivial, at 746, or that the cost
is non-trivial, at 742, may be based.

The game management system 240 (or, in another
example embodiment, game management system 470) may
thereafter determine, at 748 (e.g., by automated operation of
the state assessment module 441) whether or not a state
conflict that would result from allowing both the preempting
action and the redundant action would be significant. Thus,
for example, if the preempting action and the redundant
action were respectively to change the type of nature of a
common object to incompatible end states (such as by
building different types of buildings in a common sight), the
state conflict is determined to be significant. In an example
embodiment, a state conflict is determined to be significant
if they result in an environment state conflict that cannot be
resolved wall that are not cumulative in nature, so that the
conflict is unresolvable by changing player state information
only. Responsive to determining, at 748, that a conflict with
trivial cost is not associated with a significant state conflict,
both the relevant actions may be allowed, at 750.

Different remedial actions may be taken when a redundant
action with non-trivial cost is identified, at 742, or if a
resultant environment or world state conflict(s) is deter-
mined to be significant. In such cases, the triage module 433
applies conflict resolution logic in the example form of
triage logic with which it is preconfigured, so that triage
decision-making is applied in automated fashion. Example
remedial actions performed by the triage module 433
depending on the facts and attributes of respective conflicts,
are described below.

In some instances, the redundant action may be reversed,
at 750, and the redundant actor or later acting player (e.g.,
player B) may be compensated by restoring to the player
in-game resources (such as currency, funds, and/or energy)
spent in performance of the redundant action. If, e.g., in the
example of FIG. 7, the relevant action that is performed by
both players is the upgrading of an in-game building on
which non-trivial resources are spent, the validation system
220 may invalidate the later, redundant action and restore to
the later acting player (player B) the relevant spent
resources. Thin is referred to as reverse syncing and may be
effected by means of a reverse sync message 274 that may
be communicated by the game management system 240 to
the relevant client system 130, based on information
included in the validation result 256.

Yet a different remedial action may be performed with
respect to a redundant action with non-trivial cost, where
there is a significant environment state conflict. In such
instances, both actions (i.e. both the earlier action and the
later action) may be invalidated and reversed, at 756, and
both players may be compensated, e.g. by being refunded for
the cost of the relevant actions. For example, if both players
change the same object to different objects of roughly equal
value, the triage module 433 automatically determine that
both the relevant actions are to be invalidated or disallowed.
I, e.g., player A changed/upgraded an object or area to a
farm, while player B in a later redundant action changed or
upgraded the same object to a blacksmith shop, the triage
logic may determine that the upgraded objects are more or
less equal in value and may allow neither of the actions. In
such a case, the environment state information may be
changed and reverse synched to both players, to reset the
relevant object to its state before performance of either of the
conflicting actions, and the spent resources may be reverse
synched to both players.

US 9,480,916 B2

25

Yet a further remedial action may be performed with
respect to a redundant action with non-trivial cost, in which
both the earlier action and the later conflicting action may be
allowed and validated, at 758. For example, if player A first
upgrades a farm to, say, a level 2 farm and player B
thereafter, in a redundant action, also upgrades the same
farm to level 2, the triage module 433 may allow both of the
upgrading actions and may modify the environment state
information, at 760, to reflect that the farm has been
upgraded to a level 3 farm. Therefore, in some instances,
allowing both of the conflicting actions, at 758, may com-
prise applying the respective effects on the environment
state cumulatively, as in the example of the double upgrade
mentioned above. This change in the environment state may
be reverse synched to the client system 130 of both players.
Allowing both of the actions may also comprise at least
partially compensating one or both of the players. In
instances where the two players, for example, upgraded the
same object by differing amounts, both updates may be
allowed, and a portion of the resources spent on the update
may be refunded to one of the players. In other instances,
both players may be partially compensated, e.g. being cal-
culated pro rata according to a qualitative assessment of the
respective upgrades.

Note that the particular remedial actions described in this
example embodiment, and the triage logic that is applied to
identify appropriate remedial actions, are nonlimiting
examples, and that, in other embodiments, other factors or
other combinations of factors may be taken into account for
automated triage decision-making.

The example method of FIG. 6 B shows identification and
remediation of a single redundant action, but note that, in
some embodiments, performance of the validation actions
and therefore identification of further redundant actions and
performance of respective further remedial actions) may
continue after a first or even subsequent redundant actions
are processed.

Any remedial action as described above may be accom-
panied by an in-game message, e.g., in an information
bubble, advising the affected players of the remedial action
that was taken. For example, in the last example described
above, an advisory message may be generated and sent, at
765, to advise both players that the relevant farm has been
upgraded to level 3 because of a concurrent upgrade by the
other player.

The example embodiments thus discloses a method and
system to host an asynchronous computer-implemented
multiplayer game by receiving an action identifier that
indicates a first action executed on a first client system
responsive to player inputs received from a first player, the
first action being an in-game action that was a executed
based at least in part on client system game state informa-
tion; accessing authoritative game state information that
indicates a validated game state prior to execution of the first
action, the authoritative game state information having been
validated by a game management system; automatically
determining, using one or more processors, that the first
action fails a prerequisite check which establishes satisfac-
tion by the first action of at least one predefined game state
prerequisite with respect to the validated game state; and
responsive to determining failure of the prerequisite check,
determining that the first action is a redundant action which
was permitted by the first client system owing to its being
performed with respect to outdated client system game state
information.

Responsive to determining that the first action is a redun-
dant action, a remedial action may be executed to resolve

10

15

20

25

30

35

40

45

50

55

60

65

26

differences between the client system game state informa-
tion and the authoritative game state information resulting
from the first action. The remedial action may comprise
restoring to the first player spent resources associated with
performance of the redundant action (that is, the “first
action”).

Instead, or in addition, the remedial action may comprise
restoring the authoritative game state information to a state
prior to performance by a second player of a preempting
action that caused the redundancy of the first action. Note
that the term “first action” does not mean that the relevant
action is performed first time (although that is on occasion
possible), or is synchronized first, but instead merely serves
for the sake of clarity to distinguish a particular action that
is found to be a redundant action from other in-game actions.

The remedial action may include restoring to the first
player the spent resources associated with performing the
first action, and may include restoring to the second player
spent resources associated with performing the preempting
action. In some embodiments, a portion of the totality of
spent resources may be restored. For example, only that part
of the spent resources constituted by spent in-game
resources (contrasted with out-of-game resources, including
out-of-game currency| may be restored.

Restoring the authoritative game state information to the
state prior to performance of the preempting action may
comprise restoring an in-game object that underwent a
state-change due to performance of the first action to its state
prior to performance of the preempting action. The method
may in such cases in include determining that the first action
and the preempting action were to change the object to
different respective object types of substantially equal value.

In some embodiments, the remedial action may comprise
validating the redundant action. In some instances, the
redundant action may be validated without invalidating an
associated preempting action, so that both the redundant
action and the preempting action are allowed. In such cases,
the method may include the prior operations, upon which the
validating of the first action is conditional, of determining
that the first action was performed at a trivial cost to the first
player, and determining that the validating of the first action
would not result in an environment state conflict or would
result in an environmental state conflict that would not affect
further game play and that is therefore not significant. The
preempting action and the redundant action may in such
cases comprise upgrading or improving a common in-game
object, the validating of the first action resulting in upgrad-
ing of the common in-game object to an extent greater than
that which would have resulted from performance solely of
either the preempting action or the first action based on their
respective game state information.

The method may include determining a cost to the first
player associated with performing the first action, and restor-
ing at least some spent resources to the first player respon-
sive to determination that the first action was performed at
a non-trivial cost to the first player. Determination of a
non-trivial cost may comprise determining that at least some
of the spent resources were purchased with out-of-game
resources, or were direct out-of-game expenses. Instead, or
in addition, determination of a non-trivial cost may rise to
determining that an in-game value of the spent in-game
resources exceeds a predefined threshold value.

Determination that the first action is a redundant action
may comprise determining that the preempting action was
performed by a second player on a second client system.
Instead, or in addition, determination that the first action is
a redundant action may comprise determining that the first

US 9,480,916 B2

27

client system game state information at the time of perform-
ing the first action could not reflect prior game state changes
resulting from performance of the preempting action. Such
a determination may comprise determining that a most
recent synchronization between the first client system and
the authoritative game state information prior to perfor-
mance of the first action occurred before a synchronization
with respect to the preempting action between the authori-
tative game state information and the second client system.

It is one benefit of the example embodiments described
with reference to the drawings that it promotes noninvasive
asynchronous operation of the game engine 204 on the client
system 130, as conflicts resulting from the asynchronous
gameplay and intermittent synchronization of client system
game state information on multiple client systems 130 are
resolved in a manner which, in some examples, is invisible
to the players, and in other examples, are minimally detri-
mental or disruptive to the players involved. Automated
resolution by the provision of the conflict resolution engine
430 and the automated application of conflict resolution
logic, as exemplified with reference to FIGS. 5 and 6, serve
to reduce operator intervention and workload associated
with resolving conflicting actions that necessarily result
from asynchronous gameplay.

Data Flow

FIG. 8 illustrates an example data flow between the
components of an example system 800. In particular
embodiments, system 800 can include client system 830,
social networking system 820a, and game networking sys-
tem 8205. A system 300 such as that described with refer-
ence to FIG. 3A may be provided by the client system 830,
the social networking system 820a, or the game networking
system 8204, or by any combination of these systems. The
components of system 800 can be connected to each other in
any suitable configuration, using any suitable type of con-
nection. The components may be connected directly or over
any suitable network. Client system 830, social networking
system 820a, and game networking system 8205 can each
have one or more corresponding data stores such as local
data store 825, social data store 845, and game data store
865, respectively. Social networking system 820a and game
networking system 8205 can also have one or more servers
that can communicate with client system 830 over an
appropriate network. Social networking system 820a and
game networking system 8205 can have, for example, one or
more Internet servers for communicating with client system
830 via the Internet. Similarly, social networking system
820a and game networking system 8205 can have one or
more mobile servers for communicating with client system
830 via a mobile network (e.g., GSM, PCS, Wi-Fi, WPAN,
etc.). In some embodiments, one server may be able to
communicate with client system 830 over both the Internet
and a mobile network. In other embodiments, separate
servers can be used.

Client system 830 can receive and transmit data 823 to
and from game networking system 8204. This data can
include, for example, webpages, messages, game inputs,
game displays, HTFP packets, data requests, transaction
information, updates, and other suitable data. As discussed
with reference to the example embodiments of FIGS. 2-6,
selected communications may be serialized documents, such
as for example XML documents. At some other time, or at
the same time, game networking system 8205 can commu-
nicate data 843, 847 (e.g., game state information, game
system account information, page info, messages, data
requests, updates, etc.) with other networking systems, such
as social networking system 820q (e.g., Facebook, Myspace,

5

10

15

20

25

30

35

40

45

50

55

60

65

28

etc.). Client system 830 can also receive and transmit data
827 to and from social networking system 820a. This data
can include, for example, webpages, messages, social graph
information, social network displays, HITP packets, data
requests, transaction information, updates, and other suitable
data.

Communication between client system 830, social net-
working system 820q, and game networking system 8205
can occur over any appropriate electronic communication
medium or network using any suitable communications
protocols. For example, client system 830, as well as various
servers of the systems described herein, may include Trans-
port Control Protocol/Internet Protocol (TCP/IP) network-
ing stacks to provide for datagram and transport functions.
Of course, any other suitable network and transport layer
protocols can be utilized.

In addition, hosts or end-systems described herein may
use a variety of higher layer communications protocols,
including client-server (or request-response) protocols, such
as HTTP, other communications protocols, such as HTFP-S,
FTP, SNMP, TELNET, and a number of other protocols may
be used. In addition, a server in one interaction context may
be a client in another interaction context. In particular
embodiments, the information transmitted between hosts
may be formatted as HyperText Markup Language (HTML)
documents. Other structured document languages or formats
can be used, such as XML and the like. Executable code
objects, such as JavaScript and ActionScript, can also be
embedded in the structured documents.

In some client-server protocols, such as the use of HTML
over HTTP, a server generally transmits a response to a
request from a client. The response may comprise one or
more data objects. For example, the response may comprise
a first data object, followed by subsequently transmitted data
objects. In particular embodiments, a client request may
cause a server to respond with a first data object, such as an
HTML page, which itself refers to other data objects. A
client application, such as a browser, will request these
additional data objects as it parses or otherwise processes the
first data object.

In particular embodiments, an instance of an online game
can be stored as a set of game state parameters that char-
acterize the state of various in-game objects, such as, for
example, player character state parameters, non-player char-
acter parameters, and virtual item parameters. In particular
embodiments, game state is maintained in a database as a
serialized, unstructured string of text data as a so-called
Binary Large Object (BLOB). When a player accesses an
online game on game networking system 8204, the BLOB
containing the game state for the instance corresponding to
the player can be transmitted to client system 830 for use by
a client-side executed object to process. In particular
embodiments, the client-side executable may be a FLASH-
based game, which can de-serialize the game state data in
the BLOB. As a player plays the game, the game logic
implemented at client system 830 maintains and modifies
the various game state parameters locally. The client-side
game logic may also batch game events, such as mouse
clicks, and transmit these events to game networking system
8205. Game networking system 8205 may itself operate by
retrieving a copy of the BLOB from a database or an
intermediate memory cache (memcache) layer. Game net-
working system 8205 can also de-serialize the BLOB to
resolve the game state parameters and execute its own game
logic based on the events in the batch file of events trans-
mitted by the client to synchronize the game state on the
server side. Game networking system 8205 may then re-

US 9,480,916 B2

29

serialize the game state, now modified, into a BLOB, and
pass this to a memory cache layer for lazy updates to a
persistent database.

With a client-server environment in which the online
games may run, one server system, such as game networking
system 8205, may support multiple client systems 830. At
any given time, there may be multiple players at multiple
client systems 830 all playing the same online game. In
practice, the number of players playing the same game at the
same time may be very large. As the game progresses with
each player, multiple players may provide different inputs to
the online game at their respective client systems 830, and
multiple client systems 830 may transmit multiple player
inputs and/or game events to game networking system 8205
for further processing. In addition, multiple client systems
830 may transmit other types of application data to game
networking system 8206.

In particular embodiments, a computer-implemented
game may be a text-based or turn-based game implemented
as a series of web pages that are generated after a player
selects one or more actions to perform. The web pages may
be displayed in a browser client executed on client system
830. As an example and not by way of limitation, a client
application downloaded to client system 830 may operate to
serve a set of webpages to a player. As another example and
not by way of limitation, a computer-implemented game
may be an animated or rendered game executable as a
stand-alone application or within the context of a webpage
or other structured document. In particular embodiments, the
computer-implemented game may be implemented using
Adobe FLLASH-based technologies. As an example and not
by way of limitation, a game may be fully or partially
implemented as a SWF object that is embedded in a web
page and executable by a Flash media player plug-in. In
particular embodiments, one or more described webpages
may be associated with or accessed by social networking
system 820qa. This disclosure contemplates using any suit-
able application for the retrieval and rendering of structured
documents hosted by any suitable network-addressable
resource or website.

Application event data of a game is any data relevant to
the game (e.g., player inputs). In particular embodiments,
each application datum may have a name and a value, and
the value of the application datum may change (i.e., be
updated) at any time. When an update to an application
datum occurs at client system 830, either caused by an action
of' a game player or by the game logic itself, client system
830 may need to inform game networking system 82056 of
the update. For example, if the game is a farming game with
a harvest mechanic (such as Zynga FarmVille), an event can
correspond to a player clicking on a parcel of land to harvest
a crop. In such an instance, the application event data may
identify an event or action (e.g., harvest) and an object in the
game to which the event or action applies. For illustration
purposes and not by way of limitation, system 800 is
discussed in reference to updating a multi-player online
game hosted on a network-addressable system (such as, for
example, social networking system 820a or game network-
ing system 82054), where an instance of the online game is
executed remotely on a client system 830, which then
transmits application event data to the hosting system such
that the remote game server synchronizes the game state
associated with the instance executed by the client system
830.

In a particular embodiment, one or more objects of a game
may be represented as an Adobe Flash object. Flash may
manipulate vector and raster graphics, and supports bidirec-

25

30

40

45

55

30

tional streaming of audio and video. “Flash” may mean the
authoring environment, the player, or the application files. In
particular embodiments, client system 830 may include a
Flash client. The Flash client may be configured to receive
and run Flash application or game object code from any
suitable networking system (such as, for example, social
networking system 820a or game networking system 8205).
In particular embodiments, the Flash client may be run in a
browser client executed on client system 830. A player can
interact with Flash objects using client system 830 and the
Flash client. The Flash objects can represent a variety of
in-game objects. Thus, the player may perform various
in-game actions on various in-game objects by making
various changes and updates to the associated Flash objects.
In particular embodiments, in-game actions can be initiated
by clicking or similarly interacting with a Flash object that
represents a particular in-game object. For example, a player
can interact with a Flash object to use, move, rotate, delete,
attack, shoot, or harvest an in-game object. This disclosure
contemplates performing any suitable in-game action by
interacting with any suitable Flash object. In particular
embodiments, when the player makes a change to a Flash
object representing an in-game object, the client-executed
game logic may update one or more game state parameters
associated with the in-game object. To ensure synchroniza-
tion between the Flash object shown to the player at client
system 830, the Flash client may send the events that caused
the game state changes to the in-game object to game
networking system 8205. However, to expedite the process-
ing and hence the speed of the overall gaming experience,
the Flash client may collect a batch of some number of
events or updates into a batch file. The number of events or
updates may be determined by the Flash client dynamically
or determined by game networking system 8204 based on
server loads or other factors. For example, client system 830
may send a batch file to game networking system 8205
whenever 50 updates have been collected or after a threshold
period of time, such as every minute.

As used herein, the term “application event data” may
refer to any data relevant to a computer-implemented game
application that may affect one or more game state param-
eters, including, for example and without limitation, changes
to player data or metadata, changes to player social connec-
tions or contacts, player inputs to the game, and events
generated by the game logic. In particular embodiments,
each application datum may have a name and a value. The
value of an application datum may change at any time in
response to the game play of a player or in response to the
game engine (e.g., based on the game logic). In particular
embodiments, an application data update occurs when the
value of a specific application datum is changed. In particu-
lar embodiments, each application event datum may include
an action or event name and a value (such as an object
identifier). Thus, each application datum may be represented
as a name-value pair in the batch file. The batch file may
include a collection of name-value pairs representing the
application data that have been updated at client system 830.
In particular embodiments, the batch file may be a text file
and the name-value pairs may be in string format.

In particular embodiments, when a player plays an online
game on client system 830, game networking system 8205
may serialize all the game-related data, including, for
example and without limitation, game states, game events,
and user inputs, for this particular user and this particular
game into a BLOB and store the BLOB in a database. The
BLOB may be associated with an identifier that indicates
that the BLOB contains the serialized game-related data for

US 9,480,916 B2

31

a particular player and a particular online game. In particular
embodiments, while a player is not playing the online game,
the corresponding BLLOB may be stored in the database. This
enables a player to stop playing the game at any time without
losing the current state of the game that the player is in.
When a player resumes playing the game next time, game
networking system 8205 may retrieve the corresponding
BLOB from the database to determine the most-recent
values of the game-related data. In particular embodiments,
while a player is playing the online game, game networking
system 8205 may also load the corresponding BLOB into a
memory cache so that the game system may have faster
access to the BLOB and the game-related data contained
therein.

Systems and Methods

In particular embodiments, one or more described web-
pages may be associated with a networking system or
networking service. However, alternate embodiments may
have application to the retrieval and rendering of structured
documents hosted by any type of network-addressable
resource or web site. Additionally, as used herein, a user may
be an individual, a group, or an entity (such as a business or
third-party application).

Particular embodiments may operate in a WAN environ-
ment, such as the Internet, including multiple network-
addressable systems. FIG. 9 illustrates an example network
environment 900, in which various example embodiments
may operate. Network cloud 960 generally represents one or
more interconnected networks, over which the systems and
hosts described herein can communicate. Network cloud
960 may include packet-based WAN (such as the Internet),
private networks, wireless networks, satellite networks, cel-
Iular networks, paging networks, and the like. As FIG. 9
illustrates, particular embodiments may operate in a network
environment 900 comprising one or more networking sys-
tems, such as social networking system 920a, game net-
working system 9205, and one or more client systems 930.
The components of social networking system 920a and
game networking system 9205 operate analogously; as such,
hereinafter they may be referred to simply as networking
system 920. Client systems 930 are operably connected to
the network environment 900 via a network service pro-
vider, a wireless carrier, or any other suitable means.

Networking system 920 is a network-addressable system
that, in various example embodiments, comprises one or
more physical servers 922 and data stores 924. The one or
more physical servers 922 are operably connected to net-
work cloud 960 via, by way of example, a set of routers
and/or networking switches 926. In an example embodi-
ment, the functionality hosted by the one or more physical
servers 922 may include web or HTTP servers, FTP servers,
and, without limitation, webpages and applications imple-
mented using Common Gateway Interface (CGI) script,
PHP Hyper-text Preprocessor (PHP), Active Server Pages
(ASP), HTML, XML, Java, JavaScript, Asynchronous
JavaScript and XML (AJAX), Flash, ActionScript, and the
like.

Physical servers 922 may host functionality directed to
the operations of networking system 920. Hereinafter serv-
ers 922 may be referred to as server 922, although server 922
may include numerous servers hosting, for example, net-
working system 920, as well as other content distribution
servers, data stores, and databases. Data store 924 may store
content and data relating to, and enabling, operation of
networking system 920 as digital data objects. A data object,
in particular embodiments, is an item of digital information
typically stored or embodied in a data file, database, or

10

15

20

25

30

35

40

45

50

55

60

65

32

record. Content objects may take many forms, including:
text (e.g., ASCII, SGML, HTML), images (e.g., jpeg, tif and
gif), graphics (vector-based or bitmap), audio, video (e.g.,
mpeg), or other multimedia, and combinations thereof.
Content object data may also include executable code
objects (e.g., games executable within a browser window or
frame), podcasts, and the like. Logically, data store 924
corresponds to one or more of a variety of separate and
integrated databases, such as relational databases and object-
oriented databases, that maintain information as an inte-
grated collection of logically related records or files stored
on one or more physical systems. Structurally, data store 924
may generally include one or more of a large class of data
storage and management systems. In particular embodi-
ments, data store 924 may be implemented by any suitable
physical system(s) including components, such as one or
more database servers, mass storage media, media library
systems, storage area networks, data storage clouds, and the
like. In one example embodiment, data store 924 includes
one or more servers, databases (e.g., MySQL), and/or data
warehouses. Data store 924 may include data associated
with different networking system 920 users and/or client
systems 930.

Client system 930 is generally a computer or computing
device including functionality for communicating (e.g.,
remotely) over a computer network. Client system 930 may
be a desktop computer, laptop computer, personal digital
assistant (PDA), in- or out-of-car navigation system, smart
phone or other cellular or mobile phone, or mobile gaming
device, among other suitable computing devices. Client
system 930 may execute one or more client applications,
such as a web browser (e.g., Microsoft Internet Explorer,
Mozilla Firefox, Apple Safari, Google Chrome, and Opera),
to access and view content over a computer network. In
particular embodiments, the client applications allow a user
of client system 930 to enter addresses of specific network
resources to be retrieved, such as resources hosted by
networking system 920. These addresses can be Uniform
Resource Locators (URLs) and the like. In addition, once a
page or other resource has been retrieved, the client appli-
cations may provide access to other pages or records when
the user “clicks” on hyperlinks to other resources. By way
of example, such hyped inks may be located within the
webpages and provide an automated way for the user to
enter the URL of another page and to retrieve that page.

A webpage or resource embedded within a webpage,
which may itself include multiple embedded resources, may
include data records, such as plain textual information, or
more complex digitally encoded multimedia content, such as
software programs or other code objects, graphics, images,
audio signals, videos, and so forth. One prevalent markup
language for creating webpages is HTML. Other common
web browser-supported languages and technologies include
XML, the Extensible Hypertext Markup Language
(XHTML), JavaScript, Flash, ActionScript, Cascading Style
Sheet (CSS), and, frequently, Java. By way of example,
HTML enables a page developer to create a structured
document by denoting structural semantics for text and
links, as well as images, web applications, and other objects
that can be embedded within the page. Generally, a webpage
may be delivered to a client as a static document; however,
through the use of web elements embedded in the page, an
interactive experience may be achieved with the page or a
sequence of pages. During a user session at the client, the
web browser interprets and displays the pages and associ-

US 9,480,916 B2

33

ated resources received or retrieved from the website hosting
the page, as well as, potentially, resources from other
websites.

When a user at a client system 930 desires to view a
particular webpage (hereinafter also referred to as target
structured document) hosted by networking system 920, the
user’s web browser, or other document rendering engine or
suitable client application, formulates and transmits a
request to networking system 920. The request generally
includes a URL or other document identifier as well as
metadata or other information. By way of example, the
request may include information identifying the user, such
as a user ID, as well as information identifying or charac-
terizing the web browser or operating system running on the
user’s client computing device 930. The request may also
include location information identifying a geographic loca-
tion of the user’s client system or a logical network location
of the user’s client system. The request may also include a
timestamp identifying when the request was transmitted.

Although the example network environment 900
described above and illustrated in FIG. 9 is described with
respect to social networking system 920q and game net-
working system 9205, this disclosure encompasses any
suitable network environment using any suitable systems.
As an example and not by way of limitation, the network
environment may include online media systems, online
reviewing systems, online search engines, online advertising
systems, or any combination of two or more such systems.

FIG. 10 illustrates an example computing system archi-
tecture, which may be used to implement a server 922 or a
client system 930. In one embodiment, hardware system
1000 comprises a processor 1002, a cache memory 1004,
and one or more executable modules and drivers, stored on
a tangible computer-readable medium, directed to the func-
tions described herein. Additionally, hardware system 1000
may include a high performance input/output (I/O) bus 1006
and a standard I/O bus 1008. A host bridge 1010 may couple
processor 100 to high performance I/O bus 1006, whereas
1/0 bus bridge 1012 couples the two buses 1006 and 1008
to each other. A system memory 1014 and one or more
network/communication interfaces 1016 may couple to bus
1006. Hardware system 1000 may further include video
memory (not shown) and a display device coupled to the
video memory. Mass storage 1018 and /O ports 1020 may
couple to bus 1008. Hardware system 1000 may optionally
include a keyboard, a pointing device, and a display device
(not shown) coupled to bus 1008. Collectively, these ele-
ments are intended to represent a broad category of com-
puter hardware systems, including but not limited to general
purpose computer systems based on the x86-compatible
processors manufactured by Intel Corporation of Santa
Clara, Calif., and the x86-compatible processors manufac-
tured by Advanced Micro Devices (AMD), Inc., of Sunny-
vale, Calif., as well as any other suitable processor.

The elements of hardware system 1000 are described in
greater detail below. In particular, network interface 1016
provides communication between hardware system 1000
and any of a wide range of networks, such as an Ethernet
(e.g., IEEE 802.3) network, a backplane, and the like. Mass
storage 1018 provides permanent storage for the data and
programming instructions to perform the above-described
functions implemented in servers 822, whereas system
memory 1014 (e.g., DRAM) provides temporary storage for
the data and programming instructions when executed by
processor 1002. I/O ports 1020 are one or more serial and/or
parallel communication ports that provide communication

10

15

20

25

30

35

40

45

50

55

60

65

34

between additional peripheral devices, which may be
coupled to hardware system 1000.

Hardware system 1000 may include a variety of system
architectures, and various components of hardware system
1000 may be rearranged. For example, cache 1004 may be
on-chip with processor 1002. Alternatively, cache 1004 and
processor 1002 may be packed together as a “processor
module,” with processor 1002 being referred to as the
“processor core.” Furthermore, certain embodiments of the
present disclosure may not require nor include all of the
above components. For example, the peripheral devices
shown coupled to standard I/O bus 1008 may couple to high
performance /O bus 1006. In addition, in some embodi-
ments, only a single bus may exist, with the components of
hardware system 1000 being coupled to the single bus.
Furthermore, hardware system 1000 may include additional
components, such as additional processors, storage devices,
or memories.

An operating system manages and controls the operation
of hardware system 1000, including the input and output of
data to and from software applications (not shown). The
operating system provides an interface between the software
applications being executed on the system and the hardware
components of the system. Any suitable operating system
may be used, such as the LINUX Operating System, the
Apple Macintosh Operating System, available from Apple
Computer Inc. of Cupertino, Calif., UNIX operating sys-
tems, Microsoft® Windows® operating systems, BSD oper-
ating systems, and the like. Of course, other embodiments
are possible. For example, the functions described herein
may be implemented in firmware or on an application-
specific integrated circuit (ASIC).

Furthermore, the above-described elements and opera-
tions can be comprised of instructions that are stored on
non-transitory storage media. The instructions can be
retrieved and executed by a processing system. Some
examples of instructions are software, program code, and
firmware. Some examples of non-transitory storage media
are memory devices, tape, disks, integrated circuits, and
servers. The instructions are operational when executed by
the processing system to direct the processing system to
operate in accord with the disclosure. The term “processing
system” refers to a single processing device or a group of
inter-operational processing devices. Some examples of
processing devices are integrated circuits and logic circuitry.
Those skilled in the art are familiar with instructions,
computers, and storage media.

Modules, Components, and Logic

Certain embodiments are described herein as including
logic or a number of components, modules, or mechanisms.
Modules may constitute either software modules (e.g., code
embodied (1) on a non-transitory machine-readable medium
or (2) in a transmission signal) or hardware-implemented
modules. A hardware-implemented module is a tangible unit
capable of performing certain operations and may be con-
figured or arranged in a certain manner. In example embodi-
ments, one or more computer systems (e.g., a standalone,
client or server computer system) or one or more processors
may be configured by software (e.g., an application or
application portion) as a hardware-implemented module that
operates to perform certain operations as described herein.

In various embodiments, a hardware-implemented mod-
ule may be implemented mechanically or electronically. For
example, a hardware-implemented module may comprise
dedicated circuitry or logic that is permanently configured
(e.g., as a special-purpose processor, such as a field pro-
grammable gate array (FPGA) or an ASIC) to perform

US 9,480,916 B2

35

certain operations. A hardware-implemented module may
also comprise programmable logic or circuitry (e.g., as
encompassed within a general-purpose processor or other
programmable processor) that is temporarily configured by
software to perform certain operations. It will be appreciated
that the decision to implement a hardware-implemented
module mechanically, in dedicated and permanently config-
ured circuitry, or in temporarily configured circuitry (e.g.,
configured by software) may be driven by cost and time
considerations.

Accordingly, the term “hardware-implemented module”
should be understood to encompass a tangible entity, be that
an entity that is physically constructed, permanently con-
figured (e.g., hardwired) or temporarily or transitorily con-
figured (e.g., programmed) to operate in a certain manner
and/or to perform certain operations described herein. Con-
sidering embodiments in which hardware-implemented
modules are temporarily configured (e.g., programmed),
each of the hardware-implemented modules need not be
configured or instantiated at any one instance in time. For
example, where the hardware-implemented modules com-
prise a general-purpose processor configured using software,
the general-purpose processor may be configured as respec-
tive different hardware-implemented modules at different
times. Software may accordingly configure a processor, for
example, to constitute a particular hardware-implemented
module at one instance of time and to constitute a different
hardware-implemented module at a different instance of
time.

Hardware-implemented modules can provide information
to, and receive information from, other hardware-imple-
mented modules. Accordingly, the described hardware-
implemented modules may be regarded as being communi-
catively coupled. Where multiple of such hardware-
implemented modules exist contemporaneously,
communications may be achieved through signal transmis-
sion (e.g., over appropriate circuits and buses) that connect
the hardware-implemented modules. In embodiments in
which multiple hardware-implemented modules are config-
ured or instantiated at different times, communications
between such hardware-implemented modules may be
achieved, for example, through the storage and retrieval of
information in memory structures to which the multiple
hardware-implemented modules have access. For example,
one hardware-implemented module may perform an opera-
tion, and store the output of that operation in a memory
device to which it is communicatively coupled. A further
hardware-implemented module may then, at a later time,
access the memory device to retrieve and process the stored
output. Hardware-implemented modules may also initiate
communications with input or output devices, and can
operate on a resource (e.g., a collection of information).

The various operations of example methods described
herein may be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by soft-
ware) or permanently configured to perform the relevant
operations. Whether temporarily or permanently configured,
such processors may constitute processor-implemented
modules that operate to perform one or more operations or
functions. The modules referred to herein may, in some
example embodiments, comprise processor-implemented
modules.

Similarly, the methods described herein may be at least
partially processor-implemented. For example, at least some
of the operations of a method may be performed by one or
more processors or processor-implemented modules. The
performance of certain of the operations may be distributed

10

15

20

25

30

35

40

45

50

55

60

65

36

among the one or more processors, not only residing within
a single machine, but deployed across a number of
machines. In some example embodiments, the processor or
processors may be located in a single location (e.g., within
a home environment, an office environment or as a server
farm), while in other embodiments the processors may be
distributed across a number of locations.

The one or more processors may also operate to support
performance of the relevant operations in a “cloud comput-
ing” environment or as a “software as a service” (SaaS). For
example, at least some of the operations may be performed
by a group of computers (as examples of machines including
processors), with these operations being accessible via a
network (e.g., the Internet) and via one or more appropriate
interfaces (e.g., Application Program Interfaces (APIs).)
Miscellaneous

One or more features from any embodiment may be
combined with one or more features of any other embodi-
ment without departing from the scope of the disclosure.

A recitation of “a,” “an,” or “the” is intended to mean
“one or more” unless specifically indicated to the contrary.

The present disclosure encompasses all changes, substi-
tutions, variations, alterations, and modifications to the
example embodiments herein that a person having ordinary
skill in the art would comprehend. Similarly, where appro-
priate, the appended claims encompass all changes, substi-
tutions, variations, alterations, and modifications to the
example embodiments herein that a person having ordinary
skill in the art would comprehend.

For example, the methods described herein may be imple-
mented using hardware components, software components,
and/or any combination thereof. By way of example, while
embodiments of the present disclosure have been described
as operating in connection with a networking website,
various embodiments of the present disclosure can be used
in connection with any communications facility that sup-
ports web applications. Furthermore, in some embodiments
the term “web service” and “website” may be used inter-
changeably and additionally may refer to a custom or
generalized API on a device, such as a mobile device (e.g.,
a cellular phone, smart phone, personal GPS, personal
digital assistant, personal gaming device), that makes API
calls directly to a server. The specification and drawings are,
accordingly, to be regarded in an illustrative rather than a
restrictive sense. It will, however, be evident that various
modifications and changes may be made thereunto without
departing from the broader spirit and scope of the disclosure
as set forth in the claims and that the disclosure is intended
to cover all modifications and equivalents within the scope
of the following claims.

What is claimed is:
1. A method to host an asynchronous computer-imple-
mented multiplayer game, the method comprising:
receiving an action identifier that indicates a first action
executed on a first client system responsive to player
inputs received from a first player, the first action being
an in-game action that was a executed based at least in
part on client system game state information;
accessing authoritative game state information that indi-
cates a validated game state prior to execution of the
first action, the authoritative game state information
having been validated by a game management system;
automatically determining, using a validation engine
comprising circuitry configured to perform the deter-
mining, that the first action fails a prerequisite check
which establishes satisfaction by the first action of at

US 9,480,916 B2

37

least one predefined game state prerequisite with
respect to the validated game state;

in an automated operating performed responsive to deter-
mining failure of the prerequisite check and performed
using a redundancy determination module comprising
circuitry configured to perform the automated opera-
tion, determining that the first action is a redundant
action which was permitted by the first client system
owing to its being performed with respect to outdated
client system game state information; and

in an automated process performed responsive to deter-
mining that the first action is a redundant action and
performed using a conflict resolution engine compris-
ing circuitry configured to perform the automated pro-
cess, executing a remedial action that comprises restor-
ing the authoritative game state information to the state
prior to performance by a second player of a preempt-
ing action that caused redundancy of the first action.

2. The method of claim 1, wherein the remedial action
further comprises restoring to the first player at least some
spent resources associated with performance of the first
action.

3. The method of claim 1, wherein the remedial action
further includes restoring to the first player at least some of
the spent resources associated with performing the first
action, and restoring to the second player at least some spent
resources associated with performing the preempting action.

4. The method of claim 1, wherein restoring the authori-
tative game state information to the state prior to perfor-
mance of the preempting action comprises restoring an
in-game object that underwent a state-change due to perfor-
mance of the first action to its state prior to performance of
the preempting action.

5. The method of claim 4, further comprising a determin-
ing that the first action and the preempting action were to
change the object to different respective object types of
substantially equal value.

6. The method of claim 1, further comprising:

determining that a further redundant action performed by
a corresponding player satisfies predefined validation
criteria; and

responsive thereto, executing with respect to the further
redundant action a remedial action that comprises vali-
dating the further redundant action.

7. The method of claim 6, wherein the predefined vali-

dation criteria comprise:

determining that the further redundant action was per-
formed at a trivial cost to the corresponding player; and

determining that the validating of the further redundant
action would not result in an environment state conflict.

8. The method of claim 6, wherein the first further
redundant action and a corresponding preempting action
comprise upgrading or improving a common in-game
object, the validating of the further redundant action result-
ing in upgrading of the common in-game object to an extent
greater than that which would have resulted from perfor-
mance solely of either the further redundant action or the
corresponding preempting action based on their respective
game state information.

9. A system to host an asynchronous computer-imple-
mented multiplayer game, the system comprising:

a receiving module to receive an action identifier that
indicates a first action executed on a first client system
responsive to player inputs received from a first player,
the first action being an in-game action that was
executed based at least in part on client system game
state information;

15

20

25

30

35

40

45

50

55

60

65

38

a validation engine to perform a prerequisite check for the
first action based at least in part on authoritative game
state information that indicates a validated game state
prior to execution of the first action, to automatically
determine that the first action fails a prerequisite check
which establishes satisfaction by the first action of at
least one predefined game state prerequisite with
respect to the validated game state; and

a redundancy determination module to determine, respon-
sive to failure of the prerequisite check, that the first
action is a redundant action which was permitted by the
first client system owing to its being performed with
respect to outdated client system game state informa-
tion; and

a conflict resolution engine comprising circuitry config-
ured to execute a remedial action responsive to deter-
mining that the first action is a redundant action, the
remedial action restoring the authoritative game state
information to a state prior to performance by a second
player of a preempting action that caused the redun-
dancy of the first action.

10. The system of claim 9, wherein the conflict resolution
engine is further configured to restore to the first player at
least some spent resources associated with performance of
the first action.

11. The system of claim 10, further comprising a cost
determination module to determine a cost to the first player
associated with performing the first action, the conflict
resolution engine being configured to restore the spent
resources to the first player responsive to determination that
the first action was performed at a non-trivial cost to the first
player.

12. The system of claim 11, wherein the conflict resolu-
tion engine is configured to determine that the first action
was performed at a non-trivial cost to the first player
responsive to determining that at least some of the spent
resources were purchased with out-of-game resources.

13. The system of claim 11, wherein the conflict resolu-
tion engine is configured to determine that the first action
was performed at a non-trivial cost of the first player
responsive to determining that an in-game value of the spent
resources exceeds a predefined threshold value.

14. The system of claim 9, wherein the redundancy
determination module is configured to determine that the
first action is a redundant action by determining that the
preempting action which effected a game state change that
resulted in failure of the prerequisite check for the first
action was performed by the second player on a second
client system.

15. The system of claim 14, wherein the redundancy
determination module is configured to determine that the
first action is a redundant action by determining that the first
client system game state information at the time of perform-
ing the first action could not reflect prior game state changes
resulting from performance of the preempting action.

16. A non-transitory computer-readable storage medium
having stored thereon instructions for causing a machine,
when executing the instructions, to perform operations com-
prising:

receiving an action identifier that indicates a first action
executed on a first client system responsive to player
inputs received from a first player, the first action being
an in-game action that was a executed based at least in
part on client system game state information;

accessing authoritative game state information that indi-
cates a validated game state prior to execution of the

US 9,480,916 B2

39

first action, the authoritative game state information
having been validated by a game management system;

determining that the first action fails a prerequisite check
which establishes satisfaction by the first action of at
least one predefined game state prerequisite with
respect to the validated game state;

responsive to determining failure of the prerequisite
check, determining that the first action is a redundant
action which was permitted by the first client system
owing to its being performed with respect to outdated
client system game state information; and

responsive to determining that the first action is a redun-
dant action, executing a remedial action that comprises
restoring the authoritative game state information to the
state prior to performance by a second player of a
preempting action that caused redundancy of the first
action.

5

10

15

40

